
Page 1

��������	�

Written By : Daniel Navarro Medrano

UK Edited By: Leo Zullo, Jon Silvera & Mike Green

Published By: FastTrak Software Publishing

This manual, and the software described in this manual are copyrighted. All rights are reserved. No part of this manual or the
described software may be copied, reproduced, translated or reduced to any electronic medium or any machine readable form
without prior written consent of Hammer Technologies © 2000 or FastTrak Software Publishing.

Page 2

Thank you for purchasing DIV Games Studio. The product is the result of over two years of
continuous hard work by a team of people who have done their best to make their dream
come true.

Programming has a bad reputation of being a complicated and dark field, even more so
when it comes to games. The reason for such an image is the lack of information and the
secrecy of the alleged geniuses who have the knowledge. We are not geniuses. We make
games because we like them and we would like to share with you the information we have
about our hobby.

One day someone imagined a tool to create computer video games which would
contain all the necessary utilities.

Everything started with the idea of inventing a new programming language, the first
specifically designed for the development of video games. Many options were considered,
and all existing programming languages were thoroughly studied with the aim of coming up
with a new concept. A language which could be accessible to beginners and at the same
time powerful enough to achieve professional developments.

The result of that search is the DIV programming language : a compromise between
several options. The main problem was to determine which particular features video games
had in common which are not shared by the rest of the programs. This was essential in
order to design a language which would make video games development easier.

Video games are probably the only type of computer programs that share less things in
common with one another. Therefore the first decision had to be about the type of video
games that the language was to include since only a general purpose language would be
able to include every imaginable game.

Did this challenge have any sense then? Well, it seems that it did. The constant features
of video games are the use of graphics on the screen and the programming of movement,
animation, sound and so on. DIV is focused towards these common features.

However, DIV Games Studio is much more than a programming language. It is a graphics
environment where you can start developing a game and finish it without ever exiting DIV.
We have tried to put everything into it that our imagination could conceive, and we almost
did. I say almost because quite a few ideas have had to be left out. The only consolation we
have is that perhaps tomorrow, in a new version, those ideas could be added.

But that’s something that right now is out of our hands. Now it is up to you. It’s up to you to
become captivated by DIV Games Studio, and to really enjoy and utilise our work. That was
the hope that encouraged us to make it all the way here.

Our aim was to develop a simple tool to use, so that it only requires the user to have a
passion for video games.

We have put everything we have into DIV and the product is intended to be easy to use,
professionally finished and at a very competitive price.

We think that DIV is the best way to learn how to program and at the same time the most
entertaining one.

������

Page 3

If there isn’t a creator in you, we won’t be able to make you develop incredible graphics and
programs which could become amazing games. But if there is that creator in you, we will
provide you with everything you need to make it come out.

You may be surprised by the great number of sample games that are included with DIV
Games Studio. The reason why we have included all these games is that we feel that the
only way to really learn something is to see it working. Those of us that have been working
in programming for some time now are addicted to it and all of us have learned by watching
others.

The games that we included are not very complex - they are just examples of some of the
things you can do with DIV. None of these games use even 20 % of the real possibilities
DIV provides. We have tried to represent most of the typical styles of video games and you
can learn a lot from them. Although the truth is that we have so much fun developing them
that the only reason we haven’t made more is because we weren’t allowed to (budgets, you
know).

What can I expect to get from DIV Games Studio? That’s a good question. Well, we think
that at first you should just take it as a game, an adventure, you should investigate whatever
you feel like, try plenty of things and if eventually you decide to make some kind of serious
work, even professional, you can be sure that DIV will not disappoint you.

Perhaps you’ll be responsible for the next successful hit. That’s up to you now. We will be
waiting for you.

Daniel Navarro Medrano

Page 4

CHAPTER 1

Introduction.

1.1 Installation of DIV Games Studio ……………………………………… 8
1.2 Introduction to the graphic environment ………………………………. 15
1.3 Configuration of the environment ……………………………………… 22
1.4 Execution of the sample games ……………………………………… 25

CHAPTER 2

The Menu System

2.1 The programs menu …………………………………………………… 40
2.2 The edit menu ………………………………………………………….. 43
2.3 The palettes menu …………………………………………………… 46
2.4 The maps menu ………………………………………………………….. 48
2.5 The files menu ……………………………………………………….…. 51
2.6 The fonts menu ………………………………………………………….. 53
2.7 The sounds menu …………………………………………………… 56
2.8 The system menu …………………………………………………… 56
2.9 Help option ………………………………………………………………… 58
2.10 Programs debugger …………………………………………………… 59

CHAPTER 3

The Graphic Editor. First steps

3.1 General concepts …………………………………………………… 66
3.2 Colour palettes ……………………………………………………….…. 67
3.3 Transparent colour …………………………………………………… 68
3.4 Basic controls ……………………………………………………….…. 69
3.5 Generic icons ……………………………………………………….…. 71
3.6 Colour ranges ……………………………………………………….…. 72
3.7 Use of colour masks …………………………………………………… 73

CHAPTER 4

The Graphic Editor

4.1 Dotting and pen bars …………………………………………………… 76
4.2 Bars for lines and multilines ……………………………………………. 77
4.3 Bars for curves and multicurves ……………………………………… 78
4.4 Bars of rectangles and circles ……………………………………… 78
4.5 Spray bar ………………………………………………………………… 79
4.6 Filling bar ………………………………………………………………… 80

���������

Page 5

4.7 Blocks edit bar ……………………………………………………….…. 82
4.8 Undo bar ………………………………………………………………… 87
4.9 Text bar ………………………………………………………………… 88
4.10 Control points bar …………………………………………………… 88
4.11 Animations edit ……………………………………………………….…. 89
4.12 Tricks and advanced drawing techniques ………………………… 90

CHAPTER 5

Creating Programs. Basic Concepts

5.1 Definition of a program …………………………………………………… 96
5.2 Definition of data ……………………………………………………….…. 96
5.3 Numeric values and expressions ……………………………………… 100
5.4 Definition of a constant ……………………………………………. 101
5.5 Names ………………………………………………………………… 102
5.6 Items predefined in the language ……………………………………… 102
5.7 Statements ………………………………………………………………… 103
5.8 Conditions ………………………………………………………………… 104
5.9 Comments ………………………………………………………………… 105
5.10 Functions ………………………………………………………………… 106
5.11 Processes………………………………………………………………… 109

CHAPTER 6

A Practical Example

6.1 The graphic work …………………………………………………… 112
6.2 The first tests ……………………………………………………….…. 113
6.3 Moving the spacecraft …………………………………………………… 114
6.4 Creating more processes ……………………………………………. 115
6.5 Adding enemies ……………………………………………………….…. 116
6.6 Retouching the program ……………………………………………. 118
6.7 Destroying processes …………………………………………………… 119
6.8 Last minute changes …………………………………………………… 120
6.9 List of the program …………………………………………………… 121

CHAPTER 7

Structure Of The Programs

7.1 Head of the program …………………………………………………… 124
7.2 Declaration of constants ……………………………………………. 124
7.3 Declaration of data …………………………………………………… 125
7.4 Main code …….……………………………………………………….…. 130
7.5 Declaration of processes ……………………………………………. 131
7.6 List of statements …………………………………………………… 133

7.6.1 Assignment statement ……………………………………… 133
7.6.2 IF statement …………………………………………………… 135
7.6.3 SWITCH statement ……………………………………………. 136
7.6.4 WHILE statement ……………………………………………. 137

Page 6

7.6.5 REPEAT statement………..…………………………………… 138
7.6.6 LOOP statement ……………………………………………. 139
7.6.7 FOR statement ……………………………………………. 139
7.6.8 FROM statement ……………………………………………. 141
7.6.9 BREAK statement ……………………………………………. 143
7.6.10 CONTINUE statement ……………………………………… 143
7.6.11 RETURN statement ……………………………………… 144
7.6.12 FRAME statement……………………………………………. 145
7.6.13 CLONE statement ……………………………………………. 147
7.6.14 DEBUG statement……………………………………………. 148

CHAPTER 8

Creation of programs. Advanced concepts

8.1 Types of processes …………………………………………………… 150
8.2 Identifying codes of processes ……………………………………… 151
8.3 Ways to obtain the identifying code of a process……………………… 152
8.4 Call to a process …………………………………………………… 154
8.5 Hierarchies of processes ……………………………………………. 155
8.6 States of a process …………………………………………………… 155
8.7 Use of angles in the language ……………………………………… 156
8.8 About the conditions …………………………………………………… 157
8.9 Evaluation of an expression ……………………………………………. 157

APPENDIX A
Summary of the Syntax of a program. ……………………………………… 162

APPENDIX B
Functions of the language. …………………………………………………… 168

APPENDIX C
Data predefined in the language. ……………………………………………. 218

APPENDIX D
Summary of keyboard commands. ……………………………………………. 268

APPENDIX E
Formats of archives. ……………..…………………………………………… 274

APPENDIX F
DIV Games CD-ROM Contents. …………………………………………………… 280

INTERNET. ……...…….……………………………………………………….…. 284

Page 7

���������

������	�����

�

Page 8

This first chapter will give you directions on how to install the program onto your computer
and how to configure it so that it works optimally. The chapter also presents the basic
concepts that will allow you to get to grips with the program from the very beginning.

To function correctly this program needs the following minimum system requirements.

Program technical requirements

� 486 processor or higher (Pentium recommended).
� MS DOS or WindowsTM 95/98 operating system.
� 8 MB RAM memory (16 MB recommended).
� 30 MB free space in the hard disk (146 MB recommended).
� 2X CD-ROM or higher.
� MicrosoftTM compatible mouse.
� SVGA Graphics card.
� Recommended: a sound card compatible with Sound BlasterTM or Gravis

UltrasoundTM.

The program could possibly be installed in PC’s with lower processors (from a 386 with 4
MB memory), but the results will certainly be unsatisfactory.

This is a program of development and therefore you must always have additional space in
the hard disk for the developments. You will need it to create, compile and run the
programs. We recommend not to use the program if the free space in the hard disk (once
the program has been installed) is less than 4 MB. Otherwise some options of the program
may not work or run incorrectly.

Installation
Installing DIV is very simple. All you need is to
execute the program INSTALL.EXE from the CD-
ROM and indicate the drive, directory and type of
installation you wish to do.

�� !������������	�����

1.1 Installation of DIV Games Studio

Page 9

MS-DOS users
First enter the drive unit which corresponds to your CD ROM drive, for instance, if your CD-
ROM unit is D, then type:

D:

Then, press Enter , and after that execute the installation program using the following
statement:

INSTALL

Next, you press Enter again and the screen of the installation program presentation will be
displayed.

Windows 95/98 Users
You can execute the program in different ways, for example, by clicking on the icon MY
COMPUTER, and then choosing the CD-ROM where DIV Games Studio should be showing
(both times by a double click on the left side of the mouse).

The program INSTALL.EXE will appear in the content of the CD-ROM unit. Double click on
that program and the screen of the installation program presentation will be displayed.

Once the installation program has been executed (all users)
This installation program is controlled through the
mouse. Click anywhere on screen with the mouse or
press a key and the installation main screen will be
displayed.

The screen will be shown divided in several parts:
the hard disk chosen to install the program, the
name of the target directory (or the folder for the
program), the selection of installed components and
the program options.

Follow these steps to install the program:

� If your PC has got more than one hard disk, choose one to install the program. To do
this, you have to click on its’ icon with the mouse.

� After that, if you do not want the program to be installed in a directory (folder) called DIV,
enter the name of the directory in the center box text of the window (where the blinking
cursor appears). If it doesn’t matter to you which directory the program is installed, you
can leave it in the directory DIV, which is the programs default.

� After selecting the components which are going to be installed in your computer, you
must keep in mind that the space these components take (shown in the lower right side
of the screen as TOTAL) must be less than the free space on the hard disk you have
selected (shown underneath the hard drives’ icon).

Installation screen

Page 10

Choosing the installation
The program archives are grouped into five categories: System , Examples , Fonts ,
Artwork and Sound .

All of them have three small buttons that indicate the type of installation that can be
performed: install all the archives of these category (Max), install a good combination
between performance and space taken (Med) or install the minimum possible number of
archives (Min). By default, the program will suggest the maximum installation for all the
categories.

For all these categories the space required for the installation chosen is expressed in MB
(megabytes of hard disk space). These five categories refer to the following groups of
archives:

System : it refers to the DIV main and generic archives. Most of them are included in the
minimum installation since they are essential to run the program. The
installations Medium and Maximum include, apart from these, a higher number
of extras, such as wallpapers and colour palettes.

Examples : here are the game examples which can be installed in the Games directory.
They cannot be run directly from the CD-ROM and you will only be able to see
those you install.

Since the games take a lot of space, you can click
on the EXAMPLES to get a window where you can
specify which particular games you would like to
install. If you don’t install all the games at this time,
you may install them later. We recommend the
installation of at least the tutorial ones which will be
very useful to learn how to use DIV language.

In case you would like more information about the
games for the purposes of installation, you can find
a description of the main games at the end of this
chapter.

Fonts : in this category are the different kinds of fonts available to write text within the
games. The Minimum installation will install a small selection of fonts while the
Maximum will install all available types.

Artwork : these archives include the graphics for games, some of DIV’s own games
examples and many other new graphics that you can use in your games without
the need to draw them.

Sounds : this last category refers to archives containing sound effects ready to be used in
the games. If you don’t have a sound card, it will be better for you not to install
them (thus choosing the Minimum installation) because you will be able to install
them in the future if you decide to purchase a sound card (which we strongly
encourage).

Selection of games examples

Page 11

Recommended installation

If you have a big hard disk with a lot of free space, we recommend the Maximum
installation (complete installation of the program).

If the space in your disk is more limited, we recommend the following installation:

System : Select the maximum installation for this category.
Examples : pick the ones you like best (but include the tutorials).
Fonts, Artwork and Sound : Select the minimum installation.

Whenever you would like to access the letter fonts, the graphics or the sounds for the
games, you can read them directly from the CD-ROM of DIV Games Studio, selecting the
corresponding unit and directory (DATA \ IFS for fonts, DATA \ MAP for artwork and
DATA \ PCM for sound).

Note: You can always install the program again whenever you wish to add new
elements (such as sample games that were not originally installed). To do that you
need to follow this same process. You will not lose any work already performed in
DIV, with the exception of the example programs which will resume to their original
state (if you install them again) and therefore you could lose all changes you have
made to them.

� Once all these elements have been selected, click on INSTALL to begin the program’s
installation. This operation will take a few minutes, depending on your PC and of the type
of installation chosen.

� Finally, the program will indicate that the installation has been completed; then click
ACCEPT to exit the installation program.

DIV Games Studio Execution
The program is already installed in your computer. All you have to do now is to execute it.
For that, please follow the instructions below:

Users of MS-DOS

� Go to the hard disk where you installed the program. For instance, If it is C, you can do it
by typing C: and pressing Enter .

� Go to the directory where the program was installed. For example, if it is DIV type CD
DIV and press Enter .

� Now execute the program by typing D and pressing Enter .

Page 12

Note: we recommend not to use ALT+TAB to go to another application from DIV,
because sometimes, Windows will not restore the screen correctly when you return to
the program later. In this case, press ALT+X and then Enter to exit the program and
then execute it again (this way you will not lose the information when performing this
operation).

Note for advanced users: if you include the directory of the program in the
environment variable PATH (in the file autoexec.bat), you can execute DIV Games
Studio from any directory. When you exit the program, it will be back again to the
original directory.

Important: you may have some problem reading the CD-ROM with the reader unit. If
this happens, just wipe the DIV Games Studio CD surface using a clean and dry cloth
and try installing the program again.

Users of Windows 95/98
First of all, close the window of the program of installation, which you don’t need now, and
do as follows:

From the icon MY COMPUTER access the unit and folder where you installed the program
(as you did when you executed the installation program). Once you are in the program
folder, click twice on D.EXE to execute the program.

In the program folder you will also see an icon that can be dragged onto your desktop to
create a shortcut. This will save you time in opening up DIV Games Studio.

Installation likely problems
You should not find have any problems in installing the program if you correctly follow the
steps above.

Should you have any problems, please check the minimum requirements for the program
stated earlier. If you have any doubts about any of the elements, please contact your
computer technical service or supplier.

If you are using Windows and you have any doubts about the installation process, we
strongly advice to look at Windows Help to solve any doubts you may have.

Page 13

Note: if you are not able to install the program after trying all of these options, please
contact the FastTrak Technical Support Line on 01923 495497 from Monday to
Friday between 9:00 am and 5.30 pm local time. Or e-mail technical support at
www.div-arena.com.

Important: no questions about the programming language will be answered by this
service. For information and tips on programming refer to this book, the built in help (F1)
and the resource centre provided at www.div-arena.com.

If you were not able to install the program and you have plenty of free space in your hard
disk (enough for the program Maximum installation), you could try a manual installation of
the program. Follow these steps:

MS-DOS users

Go to the CD-ROM unit using (if your CD-ROM unit is D):

D:

AND press Enter . Then type the following commands (if your hard disk unit is C):

XCOPY DATA*.* C:\DIV*.* /S
C:
CD DIV
DEL INSTALL*.*

You must press Enter after each one of those commands. If you have enough free space
available the program will be installed with no problem. To run it, introduce the following
command:

D /SAFE

For future executions of the program, just follow the regular instructions.

Users of Windows 95
Open a session of MS-DOS (either by clicking twice on its icon or from the menu start \
programs \ MS-DOS) and follow the instructions for MS-DOS users. For future executions,
you may follow the instructions of your operating system, taking into account that the
program will be installed in the folder DIV of your hard disk.

Page 14

Problems with the mouse
If your mouse jumps on the screen instead of moving smoothly, you are using an obsolete
or incorrect kind of mouse (a mouse driver which is not updated). You can solve this
problem by doing one of the following:

� Contact your equipment supplier in order to get an updated mouse driver.

� Replace the program resolution with another one where this problem doesn’t occur (item
1.3 of this book explains how to do this).

� (MS-DOS, only for advanced users). Comment the line of the autoexec.bat file where
you load the mouse driver. You can do this from DIV itself. Load this file (placed in the
root directory of your starting hard disk) with F4 and add the word REM at the beginning
of the line which loads the mouse driver (this line generally ends with ...mouse.com).
Then press F2 to save the file again, close it (by clicking on the upper left icon of the text
window), exit DIV (ALT+X) and restart the system. If you had any problems with any
other program that needs this device, please edit the same file again and delete the word
REM you added.

Sound Set-up
Normally the audio system of DIV Games Studio is automatically configured and the user
doesn’t need to introduce any parameters.

If you have a 16 Bit sound card and you cannot hear the sound effects of the sample games
when running them, you can try to configure your sound card by proceeding as follows:

First make sure the sound system is not activated; for that use option Open sound ... from
the sound menu , and load a PCM archive (from the LIBRARY directory or from any of the
sample games). The sound effect will appear represented in a small window inside DIV. If
you click on it, you should be able to hear the effect. If you don’t hear it, check the volume
level, the speakers and the wires of your system.

In case of unsuccessful configuration:

� Press F4 to open a program and load the archive SETUP.PRG which is in the DIV
directory SETUP\ (click on the directory .. (2 dots) to go up a level and then select this
directory).

� Once the program has been loaded, a new text window where it will be contained will
appear. Now press F10 to execute it. The sound setup will be displayed.

� Enter your card parameters and click on the button Save & Exit and you will get right

back to DIV environment. Then close the window with the program SETUP.PRG and try
the sound system again.

If even after doing that, you were not able to hear the sound effects of the program, the
reason could be that your sound card is not a 100% compatible with the Sound Blaster or
Gravis Ultrasound family. In that case, please contact your equipment supplier.

Page 15

Normal Pointer: the mouse standard pointer, it’s used to activate menu
options, buttons, boxes and so on.
Hand Pointer: it tells us when we are passing over a special object,
generally over a movable object , which can be taken to another position on
the screen.
Hourglass Pointer: it appears when the system is executing some kind of
internal process or calculation. It tells us that no action can be done with
the program until such a process or calculation is finished.
Minus sign Pointer: it indicates the possibility of minimising a window, i.e.
of temporarily reducing its size in order to leave open space in the desk.
Cross Pointer: it allows us to close a window. Depending on the kind of
window the system may ask for confirmation before closing it.
Plus sign Pointer: it indicates the possibility to maximise a window; this is
the opposite action to minimise and allows to return a window which was
reduced to its original size.
Up Pointer: when the mouse is over certain controls, this pointer indicates
the possibility to display or to access to the previous elements in a list. It
also indicates the possibility of bringing a window to the front .
Dragging pointer: this graphic will appear when an object is being
dragged ; the pointer must be moved to the place of destination (to the
wallpaper, the dustbin, a map, a file, etc.) and then the left button of the
mouse must be released in order to leave the object there.
Down Pointer: opposite to the up pointer, this one indicates when we are
passing over a control which allows us to display or to gain access to the
following elements in a list .
Right Pointer: it indicates that there is a control to move a display zone ,
such as a text window, to the right .
Left Pointer: it will be displayed over the controls to move a display zone
to the left.
Diagonal Arrow Pointer: it indicates the existence of a button to change
the size of a window .
Horizontal Arrow Pointer: this graphic indicates the possibility of moving a
display window to the sides.

Basic Concepts
This first section briefly shows the basic functioning of the windows environment as well as
many of the terms that will be used later on to describe more advanced functions. We
recommend you to read it even if you are an expert user of other types of environments.

Every time you enter DIV Games Studio a dialog
box will appear. From then on, the program can be
controlled with the mouse.

Mouse Pointers
The mouse can be found on the screen thanks to a graphic called the mouse pointer which
shows different forms depending on the action to be done by clicking on the left button of
the mouse.

1.2 Introduction to the graphic environment

About Box

Page 16

Vertical Arrow Pointer: this graphic will appear over the vertical slide
bars , generally relating to a list of elements; when you click on these
controls, the elements in the list will slide.
Window Pointer: it appears on the controls that permit to enlarge a
window unto its maximum size. When the window has already been
enlarged to that size, this pointer shows the possibility of putting them back
to their former size.
Forbidden Pointer: this graphic indicates that the menu option is
deactivated , generally because it interacts with a certain object which is not
loaded or selected in the program.

ESC - To cancel the dialogue.
TAB - To choose the selected control
Enter - To activate the control that has been selected.

Click on the button “Accept” by placing the mouse pointer over it and by clicking with the left
button of the mouse. Any time a dialog box appears, the following keys can be used:

The controls that can be selected in a dialog box are the buttons and the text boxes.

Moving windows
The dialog boxes, like the rest of the windows, can be moved to any position on the screen
by clicking on the title bar and dragging it to the new position.

Title bar . It is the upper side of the windows and shows the name of the window in white
against a blue background.

Dragging . This term is used in the graphics environment when we click on an object with
the left side of the mouse, we move it to a new position and then we release the mouse
button.

When a new window is created, the system will place it in the part of the screen where it is
considered that it hides the least information. The dialog boxes are an exception: they
always appear in the middle of the screen because they require direct attention from the
user.

If we would like the system to place a window automatically, we need to click twice on
the title bar of the window. If the system finds a better position for the window, it will move it
there.

Types of windows
Windows can be classified according to different criteria; depending on their state , they
can be grouped in:

Foreground : they show the title bar and information and they are highlighted (those
windows which are not covered totally or partially by others). These are the only
windows on which actions can be performed . They can also be divided in two
groups:

Page 17

Active windows : unless the colour configuration has been changed, they have
the title bar highlighted with white letters against a blue background.
Inactive windows: Their title bar is in black letters on a dark gray background.
To activate one of these windows, all you need is to click on them.

Background : same as the foreground windows, except that these ones are darkened
because they are at least partially covered by other windows. To interact with these
windows it’s necessary to bring them to the foreground by clicking on them. These
background windows can also be active or inactive depending on the colour of its
title bar (which is now darkened).

Icons : icons are windows that have been minimised, i.e. reduced temporarily. They do
not display any drawing, only a plus sign and the window title. They will not be
darkened when they go to a background.

Windows can also be classified according to its function :

Dialog boxes : they appear in the middle of the screen. They cannot be minimised (i.e.
they cannot turn into an icon). They put the rest of the windows in a background (even
if they are not covered). There are three kinds of dialog boxes.

Information windows: boxes like the one you find when you enter DIV Games
Studio, with only one button, accept, used to continue the execution once the
message has been read.

Interactive Dialogues : used to ask the user for information. There is a great
variety of them and they will be seen in their respective options. They usually
have at least two buttons, one to accept and the other to cancel .

Error Boxes : same as the information windows, except that the title bar is
displayed in white against red. They inform about any problem that has
occurred.

Conventional windows: they only leave in the background those windows they
cover. They can be minimised at any time and they can be displayed anywhere on the
screen. The main types of windows are shown below (the rest will be seen later):

Options menus: a list of options
that take to other menus, windows or
dialogues when clicking on them. All
menus start from the main menu.
Some menus have some options
deactivated (in this case a forbidden
pointer appears when the mouse is
over them) because they interact with
a specific type of window and no
window of this kind is active (it will be
necessary to create one or to load it).
Chapter 2 shows all tools that can be
accessed through the options menus.

Options Menus

Page 18

Programs : we create the programs in
these windows. They are text editor
windows. In order to edit a program its’
window must be activated (only one of the
programs loaded can be activated). The
text editor is very similar to other text
editors. Appendix D offers a summary of
the editing commands that are available.
These windows are controlled from the
programs menu and the edit menu. To
get help about a word of the language
in a program the blinking cursor (not the
mouse pointer) must be placed over that
word and then press F1. The size of these
windows can be changed by clicking on
their lower right button and dragging
them with the mouse.

Maps or graphics: these windows
contain a map (bitmap) or a graphic
(a drawing used in a game). They are
controlled through the Map menu.
They can be loaded from a MAP
archive (own format), or imported
from a PCX or BMP archive, or they
can be saved in any of these
formats. To edit graphics, we must
double click on these Windows with
the mouse left button, thus entering
in the graphic editor (described in
chapter 3). These graphics can be
dragged to the wallpaper (to make a copy), to another graphic (to insert them),
to a file of graphics (to include them) or to the dustbin (to delete them). Maps
can have any kind of size, the only limit is the available memory:

Files of graphics : these windows
always correspond to a FPG file in
the disk. They are libraries or
graphics collections used in the
games. They are useful because that
way you don’t have to load a great
number of maps separately in a
game. They have two basic modes of
functioning which are activated
through boxes in their lower part. The
first mode is Tag/Drag and is used
either to tag and untag a series of graphics on which we would like an operation
to be done or to drag graphics out of the file (to the wallpaper, to other files,
maps or to the dustbin). The second mode is Info , and is the mode where you
can edit the codes of the graphics and their descriptions or simply display its
contents. The graphics files are controlled through the Files Menu.

A Program Window

A Map or Graphic

A Graphics File

Page 19

Fonts : the fonts or types of letters are small windows
that represent a certain style of writing. If you click on
them you will be able to see a sample of the font.
They correspond to FNT (own format) and are
controlled through the font menu from which the fonts generator can be
accessed. This is the tool used to create new letter fonts. The fonts are used to
write text in the drawing programs and in the games.

Sound effects : they appear on the screen as PCM’s
(pulse code modulation) in small windows. They are
controlled through the Sounds Menu and they can be
imported from WAV archives. In the DIV directory you
will a library with almost 1000 sound effects all ready
for use in the games. To hear a sound effect you
need a 16 Bit sound card which is correctly configured
and then you need to click on one of these windows.

Help windows : they are controlled
mainly by the mouse but you can
also use the cursors , the page
down and page up keys and
Backspace to return to the
previous page (this key is the one
we use to delete and is situated
right above the Enter or Return
key). The help windows show the
text in three colours: the main text
in black , the highlighted text (in bold type) in light gray and the texts which refer
to other help pages in white. To access those pages you must click on the
references. The help windows also show examples which can be accessed by
clicking on them and executed by pressing F10 or aborted by pressing ALT+X .

(*) the dustbin window must be activated first from the menu system using the relevant
option.

Windows Basic Controls
The main controls used in the windows are:

Minimise Button . First button in the title bar of the conventional windows. The dialog
boxes don’t have this button. It is used to minimise the windows, i.e. to turn them into

an icon. Windows are minimised when free space is needed on the desktop window. An
alternative is to close those windows without losing the information they contain.

Maximise Button . Only present in the icons. It is used to maximise the windows,
restoring it to its complete size from the icon. The windows will go back to its original

position unless they cover another window there and free space is available somewhere
else on the desktop. Icons can be moved to anywhere on the screen by clicking on its name
and then dragging. A double click on the icon name will make the system find the best
possible position for the icon in the desk.

Fonts

A Sound Effect

A Help Window

Page 20

Close button . Used to close the windows, i.e. to eliminate them. It is present in all
windows and dialog boxes but not in the icons since these ones must be maximised

to be closed. In the windows which contain information that can be lost, confirmation will be
asked before closing them. For the rest of the windows, such as menus, this confirmation
will not be asked, since they can be created again any time.

Enlarge Button . It is displayed in the program windows and used to adjust the size of
the window to its maximum. To put an enlarged window to its original size you have to

click on this same button. This action can also be performed by pressing Control +Z, in
which case, if there were several windows of the program, the one among them which is
active will be enlarged (or minimised if already enlarged). To activate a window, all you need
is to click on it with the mouse.

Rescaling Button . This plain button is displayed in the program and help windows. It
is used to change the size of a window manually. Click on it with the left side of the

button and, without releasing it, move the mouse until the window has the size you wish.
The help windows can only be rescaled vertically (to add or to suppress lines but not
columns). The program windows will never be over the limit of 80 columns per 50 lines.

Slide bar . This bar is always associated to a display window, such as a list
of elements, and indicates the possibility of moving or sliding the contents

of that window. In both of its ends there are two direction buttons used to slide the list of
elements little by little. A movable rectangular indicator placed between both buttons shows
the part of the list being displayed. By clicking on the bar the list will quickly slide until it gets
to the chosen position.

Text Button . This button is displayed in the dialogue boxes and its function
depends on the text written on the button. The most common ones are the

buttons Accept , to validate the action of the dialog box and Cancel, to cancel the action.
Very often this button will be the same as the button for closing the box described above
and displayed in the upper right corner. If you wish to see the function of a specific text
button, you must access the explanation of its dialog box. Most of them are described in
chapter 2 of this book. Any text button can be selected by pressing once or twice on TAB ,
and can be activated with Enter (the button will be shown with a dark edge when selected).

Switch . The switches are options of the program which can be activated or
deactivated. The text at the side of the switch refers to the option or feature of

the program whose state can be established. Such features will be activated when inside
the switch there is a black point. To activate or deactivate these options all you need is to
click on the switch or on the text; it is not possible to modify a switch through the keyboard
commands.

Text box . Used to ask for any kind of numeric or alphabetical information, but
they can also be selected by using TAB . Once they are selected, a dark edge
will be shown in the box and you will be able to start writing directly or

otherwise press Enter to go to edit mode. Once the text has been edited, the key Enter will
validate the new text and the key ESC will cancel the edition making the text box recover its
previous content. A box can be edited by clicking on it; the first click will activate the box
keeping the previous text, the second click will delete it.

Page 21

The Menu System
The Menu System is a group of windows with options that derive from the window called
Main Menu . Once it has been activated, a menu will remain on the screen until it is closed
or minimised. Any menu can be created again from the main menu when we need it.

When you refer to an option, you must indicate the name of the menu
and then that of the option with an inverted bar between them. For
instance, the option Programs \ New.. refers to the first option of the
menu of programs, used to create a new program.

Some menu options can be reached through shortcuts, i.e.
combinations of keys that permit to do the action directly, even if you
have not opened the menu. In these cases, the key combination is
always shown in the menu itself, next to the text of the option.

To exit the environment, press ALT+X and a confirmation box will
appear. To exit quickly without having to confirm, press ESC+Control .
Windows users must be careful with the order in which they use this
combination: first, they have to press ESC and, without releasing it,

then press Control. If they use this combination the other way around (i.e. Control +ESC), it
will take them to the start menu of the Windows system.

The contents of DIV Games Studio’s desktop will be restored in the next execution of the
program exactly as you left it when you exited, and therefore information will never be
lost when you exit the environment.

Here is a summary of the functions of the most important menus you can access from the
main menu. Chapter 2 gives a detailed description of the functions of these menus.

Programs . This menu allows to load programs, to execute them, to debug them or to create
new programs. Programs are shown in the edit windows. From this menu we access the
Edit menu, where the basic commands of text editing are shown (cut, paste, searching,
replacements, etc).

Palettes . The colour palette is the whole 256 colours used by the game. From this menu
you can load palettes (from multiple archive formats), record, edit (to create new palettes),
give them an order, fuse them, etc. All graphics used simultaneously in a game (in the same
screen or phase) must have been created with the same colour palette. When there is a
graphic in the desktop window and you would like to load another one with a different
palette, the system will make you adapt one of them to the palette of the other one. Chapter
3 gives a detailed explanation about the use of palettes.

Maps . Maps or graphics/sprites are the backbone of the games. This menu allows to work
with archives MAP, PCX or BMP, to create both the graphics/sprites of the characters and
the scenery of the games. Graphics of these files can be loaded, recorded, edited, copied
and so on. To edit them you can use the option Edit map or double click with the mouse.
From this menu you can also access the Explosion Generator.

Files. The FPG files are files that contain libraries or complete collections of graphics. They
are used in the games to load many graphics in one go. In order to put graphics into a file,
the map windows have to be dragged onto the File window. This menu gives access to the
basic options of the Files.

The Main Menu

Page 22

Fonts . The letter fonts refer to the FNT archives which contain game fonts, ready to be
used in the games. This menu allows you to perform the basic options with these archives,
among them, to access the font generator which is used to create new fonts. The last
options of this menu allows you to export fonts to graphic maps to retouch them manually in
the graphic editor and them to import them back again into a font archive.

Sounds . This menu allows you to load sound effects from PCM archives and to hear them
so that you can identify the suitable sound effects for a specific game among the ones in the
DIV Games Studio sound library. These effects can also be imported from WAV archives,
which is the windows standard format.

System . The system menu gives access to the generic tools of the environment and to the
configuration options. From this menu the colours, fonts and video mode used in the
environment can be defined. The configuration options are described next.

Setting a videomode
The option System \ Videomode... gives access to a dialog box that allows us to modify the
resolution used by the DIV Games Studio’s graphic environment.

The video resolution is indicated as the number of
pixels (horizontally and vertically measured) existing
on screen in that mode. They vary between 320x200
(low resolution) and 1024x768 (highest resolution). It
is necessary to click on the list appearing in the box
and then, on the button Accept in order to select a
new resolution.

Important : Some of these videomodes can incorrectly be displayed in some computers. In
these cases, the first thing to do is to exit the environment by pressing the ESC+Control
combination and then, re-enter DIV in the fail-safe mode. For that, the following command
must be executed from the commands line of MSDOS and in the directory (folder) in which
the program has been installed :

 D.EXE /SAFE

Thus, the environment will be entered in low resolution (in 320x200, the most compatible
mode). To position in the program’s directory from the commands line, the following
statement must be executed (supposing that the program has been installed in unit C, in the
directory DIV):

 C :
 CD \DIV

In those computers in which the videomode is not compatible with the standard VESA, a
vesa driver must be used. For that purpose, you must contact the supplier or the after-sales
service of your hardware equipment (a driver is a short program that must be installed in
the computer to give support to some devices such as, in this case, the monitor).

1.3 Confi guration of the environment

Videomode Selection Box

Page 23

Due to problems of incompatibility of the mouse driver , it is possible that in some
computers, the mouse pointer jumps. In these cases, it is necessary to update that driver or
use another videomode for the environment, otherwise it won’t be possible to correctly work
in the graphic editor.

Two switches allow us to select the font used by the system:

Small font . In this mode, all the windows, menus and boxes will be seen in a smaller
size, being appropriate for low resolution .

Big font . This mode can only be activated in SVGA resolutions (from 640x480)
and it is the appropriate for these resolutions in 14 inch monitors.

The font used in programs and help windows is defined in the configuration window later
described.

Configuring the wallpaper
To establish the desktop’s wallpaper, it is necessary to access the option System \
Background... , which will invoke the following dialog box:

First, the button '...' indicating 'Source ' must be
clicked to select an archive MAP with the graphic
aimed to be used as background. If the aim is to use
an archive PCX or BMP as a background, it must be
first loaded with the option Maps \ Open map... and
then, saved (Maps \ Save as...) indicating an archive
name with the extension .MAP.

The appearance of this graphic will be indicated
through the following switches:

Mosaic . If this switch is activated, the game will be
displayed in its original size, not re-scaled, and if it is
smaller than the screen, the picture will be repeated
until the screen background is filled with it. When it is disabled, the picture will be re-scaled
(expanded or reduced) to fit the screen size.

Colour / Monochrome . Out of these two switches, only one can be activated. The first one
indicates that the picture will be taken in colour, adapting to the colour palette active in the
environment (it normally implies a loss of quality for the picture). If the second switch is
activated, the picture will be adapted to a colour range of the palette, which will be defined
with three components: Red, Green and Blue .

These components, ranging from 0 to 9, will be modified with the buttons '-' and '+'. They will
only be applied when the switch indicating Monochrome is activated, and they define the
lighter colour of the range. Some examples of combinations of these values and the
resulting colour are now shown:

� Red=9, Green=9 and Blue=9 will define the white colour as the lightest one in the range
(the wallpaper will be shown in black and white).

� Red=0, Green=0 and Blue=9 will define the pure blue . The wallpaper will be shown in

different blue shades.

Wallpaper configuration

Page 24

� Red=4, Green=0 and Blue=0 will define the dark red colour as the lighter one of the
range. That is to say, the wallpaper will be seen in dark red shades.

� Red=9, Green=9 and Blue=0 will define the colour yellow (red+green). Then, the

background will be seen as a colours range defined between the black and yellow
colours.

The resulting ranges must be adapted to the colours available in the palette, some of these
ranges look better than the rest. Consequently, before finding a colour range compatible
with the palette, several tests must normally be carried out.

The changes made in the wallpaper won’t be visible until the dialog is finished by clicking on
the button Accept .

The configuration system
Through the option System \ Configuration... , a
dialog box will be accessed. From it, many aspects
of the graphic environment can be defined.

This dialog is split into several sections, shown
next. These options won’t take effect until the dialog
finishes.

Window colours . This first section establishes the
colours used by the environment. The background,
ink and bar colours may be changed. In order to
change one of these colours, it is necessary to click
on the box with the colour, and a dialog box will
appear that will show all the colours available in the
active palette. The currently selected colour will be
shown inside this box with a mark. To select
another colour, it is necessary to click on it first,
and on the button Accept later. The system doesn’t
only use these three colours but, from them, it
generates other intermediate colours for texts,
cursors, buttons, etc.

Program editor . The appearance of the programs edit window is established in this section.
The three basic colours (windows background, characters ink and cursor colours), as well
as the edit font (the letter type’s size) can be selected from 6x8 pixels to 9x16 pixels. All the
edit fonts are fixed spacing. To select another font, the buttons of the scrolling bar must be
used. The text blocks tagged inside the editor will be seen with the ink and background
colours exchanged.

Painting program . In this section, it is possible to define the quantity of memory reserved to
undo options in the graphic editor and the mouse pointer used in the edit. The amount of
memory is specified in Kbytes; by default, it equals 1088Kb (a little bit more than one MB).
It is not necessary to modify this value, unless a task can not be performed in the graphic
editor because there is not enough undo memory (in that case, the program will report it).
The bigger the undo memory’s reserved space is, the smaller the memory space available
in the system will be for the rest of tasks. It is possible to select among three different
pointer sets by clicking on the pointer graphic shown in this box.

Box To Configure The Environment

Page 25

Global options . Three switches appear in the last section. When they are activated, they
will define the following characteristics:

Exploding windows . Indicates that all the windows’ offsets must be displayed on
opening, closing, minimising, etc. If this option is disabled, the environment will lose
effectiveness, but it will answer more quickly.

Move complete windows . Indicates that, on dragging the windows to a new position,
the final result must be seen all the time. The windows that are progressively
uncovered will pass to the foreground and those that are hidden will pass to the
background. It may be advisable to disable this option in slower computers.

Save session always . Indicates that, on exiting DIV Games Studio, the state of the
desktop and all its objects (programs, maps, sounds, etc.) must be saved. If this
option is disabled, the user will enter and exit the environment more quickly. However,
the user risks losing works that have not been saved on exiting the environment.

If the configuration window is closed or the ESC key is pressed, all the changes made in it
will be lost, restoring the values of the previous configuration.

General instructions
This section will explain how to execute the sample games of DIV Games Studio and will
also give you the instructions for all of them.

All these games are simple examples and therefore even though they are complete games
most of them are very easy or very short. The reason for this is that we have tried to show
the techniques they use and the way the programs are made and not to give endless lists
where the user would get lost. Nevertheless we have put a lot of enthusiasm into these
games and we hope you find them enjoyable (we like them very much...).

To execute any of the examples, first you have to load the program by using the option
Programs \ Open program... , which will make a window appear containing the list of the
program loaded.

We encourage the user to examine the programs and to try to make changes in them… this
is one of the best ways to learn . When you are over any reserved word, constant,
variable, function, etc. of the language, you can press F1 to see a help page about that
item. If the help about the item doesn’t appear (and what appears is the general index), it
means that the item is not a name typical of the DIV language but a constant, variable or
exclusive process of the game (processes are like functions which direct the performance of
the graphs or of the ‘sprites’, in the games).

We recommend to start with a simple game, like STEROID.PRG (Steroid, a version of the
famous Asteroids) which although it is not technically very advanced or graphically very
spectacular, it’s one of the easiest ones to understand. Later on we can go to more complex
ones such as MALVADO.PRG (The castle of Dr. Malvado, platforms) or FOSTIATO.PRG
(Fostiator, a fighting arcade game in the traditional style). These will teach you many more
things.

1.4 Execution of the sam ple games

Page 26

Texts starting with the symbol // (double bar) are explanation comments, they are not part of
the program but clarifying notes about the running of the program. These comments are
usually vital to be able to understand how the programs work since they can be placed
anywhere in the program.

In order to go to one of the program processes (one of the blocks containing programs to
control a graph or a sprite of the game) you have to press F5 and select the name of that
process by using the mouse.

To execute one of the loaded games, you have to click on its window with the mouse and
them press F10 (you can also do this using the option Programs \ Execute.

Instructions for these games vary from one to another, but most of them allow to exit by
pressing ESC and are mainly run with the cursors keys and with Control .

The Pause key can be used in all the games to stop its running momentarily.

All programs can be aborted at any point just by pressing the key combination ALT+X.

The most curious of minds can go into the games
by pressing F12 (from the game itself, when this is
being executed). This key allows to access the
program debugger , which is a tool designed to
execute the games step by step. This way you can
watch all processes and modify its variables (if you
find the appropriate variable, you can change all
the game parameters, the phase number, the
lives,...). Of course at this point we don’t guarantee
the results you get.

Let’s play!...

Program Debugger

Page 27

The galactic spaceship Caesar-Julius
(the blue triangle) has got lost in a
field full of immense fusion asteroids
(the drawings of yellow lines) and it
must make its way through them by
destroying them with its neo-
electrons laser-phaser. There have
been more versions of this traditional
game than what anyone can
remember.

To start the game you have to press any key and to exit it the
key ESC. You have three lives to try and reach the highest
possible level (it’s really difficult to go further than the fourth
level and even to get to this one).

It is controlled by the following keys:

The hero of this colourful platform adventure
is Jack, a chubby boy who for some reason
is very mad at the wicked Doctor Malvado.
Jack has to get to him trough multiple
obstacles and through beautiful landscapes
to quench his thirst for revenge.

The game is divided into three parts. First,
Jack has to go through the woods and get
inside the castle to battle the son of the Doctor, who, by
the way, is even fatter than him. Then, he has to climb
one of the castle towers avoiding spiders, haunted
pumpkins and other hair-raising objects. And, finally
Jack has to fight Malvado and find the devious way to
beat him, either by playing a lot or by studying the list
of the program to see what he does.

������������	

STEROID v1.0

Right : Clockwise rotation.
Left : Counter-clockwise rotation.
Up: Accelerating (to brake you have to accelerate in the other sense and this is more difficult
than it should be).
Space : Neo-electrons laser-phaser shot.
H: Hyperspace (it takes the spaceship to another position in the screen when collision with
an asteroid is imminent).

THE CASTLE OF DOCTOR MALVADO

Page 28

Jack has only two extra lives to get to the end and since they are not at all enough, he has
the opportunity of picking up new lives along the way by collecting ten coins from the many
which are available.

If you are fond of platform games, you will find this one a fun and especially difficult
challenge and if you don’t like them we are sure this game will get on your nerves.

You can play with the joystick or using the following keys:

The hero may go up many objects in the map, for example, the mushrooms; all he needs is
patience and ability. Enemies can only be killed by jumping on them, same thing for Doctor
Malvado’s son. But how do you kill Doctor Malvado himself ?

This is the ultimate combat between the best bionic person and super human warriors. It is
a very simple – a typical fighting game but it is great fun and has ample ‘gore’ (very
generous when blood is concerned). It consists of three round fights between two of the
following warriors:

Alien : A 612 BC Alien warrior who is now
somewhat rusty. He returns to live in 1992 to be
in the Olympic Games in Barcelona but they
wouldn’t allow him to participate and now he is
in a very bad mood. His strength is medium-
low, but he is very skilled in the use of a claw.
Something like good old Freddy which would
raise even Casper’s uncles’ hair.

Bishop : he is the good guy: a bionic warrior with high tech
parts. More handsome than Barbie’s Ken, he participates in
the fights only to get a hard man face. His strength is
medium-high and his main weapon the anvil in his hand,
ready to make the rest of the fighters’ faces look hard.

Ripley : the only girl in the game. Her intelligence is much
higher than that of the other fighters. She used to be the best gymnast in the planet, though
she also was a waitress (for two months), taught little kids, programmed videogames, etc.
She is the least strong one but she is very hard to beat because she uses the sharp Ra
baton - excellently.

Nostromo : one of the immortals who has not fought Christopher Lambert yet. He is
certainly immortal but he can be knocked out like the rest. He is rude and he bases all his
strategy in the blows with his double-edged battle axe. He is the strongest one and this
gives him a good chance against the others.

Left and right : to move Jack to both sides.
Space or Control : Jump.
ESC: Abort the game or exit it.

FOSTIATOR

Page 29

The game features have to be set in the option selection screen by using the cursors to
select the options and pressing Enter to activate them. Up to bottom, the following options
can be set:

Control of players. You can select who controls the first player and who controls the
second. This way you can select a demo (computer against the computer), a player against
the computer or a game for two players.

Level of difficulty. Three levels of games can be established. Even in the most difficult one
it is possible to beat all the fighters, of course.

Blood Level . You can omit blood (but the game loses much of its attractiveness) or set the
blood level to: normal (which is already a lot of blood) or excessive (you can work it out).

First and second fighter. Any of the four fighters can be selected as the first or second
player. You can choose the same one for the first and second player; in this case you will
see the first one coloured and the second one in black and white.

Game scenery. You can choose between three scenarios for the battle: the castle, the cave
or the desert (this makes the fights more attractive).

The game keys are shown in the control option of the players (the first one). By using these
keys you can advance, go back, jump or get down; you also have a blow key which
depending on the action will give one blow or another.

Other blows can be performed...but first you’ll have to program them.

Game strategy
This game is not only about hitting. You have to keep in mind that any time you use the
same kick or punch it loses effectiveness , either the other fighter gets it or not. Defense is
as important as attacking and thus all blows have to be used to get the best out of each
fighter and also the same blow or kick mustn’t be repeated many times (otherwise it won’t
do anything to the opponent in the end). Then the best thing is to try to hit the opponent
every time we use a blow or else our fighter would get tired for nothing and will be
vulnerable.

The easy mode is probably quite easy, but to win in the difficult mode is a much more
interesting challenge and so are the two player games.

Blow while stopped . Punch (or traditional blow).
Advance and kick . Short and quick kick.
Go back and kick . Super rotating kick.
Jump and kick. Kick in the air.
Crouching punch . A punch while crunched (a low blow).

Page 30

The US President, decorated with a
Medal of honour when he was young, has
to defend the Earth from the outerspace
invaders. He is on board a state of the art
fighter. This is a version of the typical
space invaders game in which a single
aircraft battles hundreds of enemies.

You can press any key to start the game and ESC to exit or
to abort a game. You have three lives to finish with as many
enemies as possible and this is increasingly difficult. The
fighter-plane can be controlled with the following keys:

To increase game difficulty: you cannot shoot again until the previous shot has collided with
an enemy or it gets out of the screen. During the game, the maximum score you have got
will be shown. We have not been able to go over the fifth level.

Probably it is not a very realistic simulation, but under its childish appearance the four
ferocious racing cars hide High Horse Power engines.

It is a hard race where second gets nothing (actually
the winner doesn’t get much either). In the first screen,
you can select, with the cursors and Enter , to start a
game with one or two players (the screen divides into
two), to set the race options and to exit the game.

The race options which can be defined are the
following:

Difficulty Level. You can choose between three levels.
Race scenery . You can choose between a forest or a desert.
Number of laps . It can be 3, 6 or 9 laps to the circuit.

Once in the race, the keys for both players are:

To abort a game you can use the key ESC. The games with two players will not finish until
both cars have crossed the finish line.

GALAX

Left and Right : Move the aircraft laterally.
Space : Laser shot.

Player 1 - the keys of the cursors.
Player 2 - R, T to turn and Q, A to speed up.

SPEED FOR DUMMIES

Page 31

When a car tries to get out of the circuit it will bounce and stop. Thus you will never be the
winner if you are pressing the accelerator the whole time. The fun of the game is in learning
the circuits so that you are able to take each turn as fast as possible. Probably in the first
game you don’t make a single right turn, but this is normal.

This is another adaptation of a game that has had many versions. I imagine that whoever
had the idea of a game with a ball which goes breaking a wall never thought that his idea
could go this far. He probably thought that it was kind of stupid, but he was wrong.

Some smart chappy came up with the fantastic idea to add sense to the game: the wall had
to be knocked down because a galaxy depended on it. But this game doesn’t need a
reason, only skill and even more patience than you need to finish programming videogames
once you start.

To start playing all you need is to press to knock down some bricks with the following keys:

There are a great number of walls you can tear down, also different kinds of bricks and a
series of capsules whose effect must be learnt as you play. The capsules can be good or
bad depending on how lucky you get.

Not all the bricks can be broken, so you must not insist on tearing them all them down if you
see that after hitting them hundreds of times they are still in the screen.

NOID lacks any strategy whatsoever and thus intelligence is not required to play (how lucky
we are).

Commander Kzygürhypsñü, these are your goals in this mission: “you must...beep...use
A.S. (Alien Suprimer, an alien robot to suppress other intelligent or human civilisations)... to
destroy a few...bip...inhabitants of the Earth
(stop). This is a training mission, exclusively for
sport (stop). Have a good hunting trip,
commander, and a good time, bip”.

If you like action in the style of the A-team, you
are going to love this game. Its a vertical space-
invaders killer (in this case it is people from Earth
that we kill). You face a great number of units
belonging to a professional army. A difficult
mission, no doubt about it.

NOID

Left and Right : to move the cybernetic racket where the ball will bounce (if you can hit it,
of course).
Space : to release the ball and shoot when you get the laser racket.
ESC: Finish a game or exit the game.

ALIEN SUPRIMER

Page 32

Both the options and the game are controlled with the cursors and the Control key.
Several ambushes have to be overcome, each one harder than the one before, until you get
to the final enemy, a super giant you will try to beat.
To win in this game, you have to advance slowly and cautiously. If you go too fast, the
enemy’s ambushes will accumulate and they will make roast chicken out of the poor
commander who will leave 13 lonely alien widows.

You have five land to land missiles to complete the mission (they are useless against
helicopters). You can shoot the missiles during the game by pressing ALT . If you really want
to make it all the way to the end you better keep the missiles for the final enemy. The laser
shots are endless, so the worst thing that can happen if you use them too much is that you
may have to buy another Control key.

Solving 35 piece puzzles may be easy even for Nostromo. But if you don’t have much time
to do it, they can be a challenge even for a videogames programmer.

This game, that gets you addicted like many others, challenges you to solve five puzzles
each in a shorter time than the previous one. In the options menu can be used the following
keys:

F1: To start a game.
ESC: Exit the game.

Once you have started the first game, you’ll have 250 seconds to solve the first puzzle; this
can seem like a long time for 35 pieces but I bet you won’t be able to do it the first time. To
move the pieces, you have to drag them with the left button of the mouse and turn them
with the right button.

When a piece is placed in the right orientation and right next to the right position, the
program will take it down to its place. Then you have to worry about the pieces which
haven’t been placed yet.

Of course the pieces will come in a different orientation and position in each game. For the
second level, you’ll have 200 seconds plus the time left from the first level, in the third level
you’ll have 150 seconds and so on.

The game keeps the best times of each game and invites you to beat them in the next
games.

Once you are familiar with the shapes and if you concentrate a little bit, it won’t be difficult to
complete them. If you think solving puzzles is for boring people, this game will change your
opinion. Try it.

PUZZLE ‘O’ MATIC

Page 33

The bionic warrior Bishop used to destroy whole groups of enemies in his space fighter.
When his craft got too old and he couldn’t get a new one, he started to wrestle. Now this
horizontal space-invaders killer evokes the space odysseys of your youth.

In the title screen you have to press key 1 to start a game. During the game, the spaceship
fighter will be controlled with the cursors and shots will be made with the Space key. You
have three lives to advance until you beat the final enemy.

Each time a whole group is eliminated, a capsule with a letter or with a small metal molecule
will appear in the screen. If the word ‘BONUS’ is completed with the capsules of letters,
you’ll get rewarded with an extra life. And each time you take one of the metal molecules,
the power of the shot will be increased.

If the fighter collides with a shot or with an enemy it will be destroyed and will lose one of its
lives. When you get a new life, a magnetic field will protect the fighter from the enemies for
a few seconds and then it will disappear.

If Bishop was able to do it, we are sure it is easy to do it.

Fatty Paco, 38 years old, it’s still afraid of the bad
guys. And it is not surprising, since there are four
bad guys who have something very personal
against him. If you don’t know this game, you
haven’t been involved with videogames for very
long because this is the best known classic
videogame. Paco-man is a conversion of an
arcade videogame which was extremely popular a
few years ago.

This game gets you hooked with the challenge of
eating as many points as possible and in turn
trying not to get eaten. These four little ghosts will give you trouble along the 10 levels of
increasing difficulty.

There are not spectacular graphics, or shots or explosions. The only weapon Paco has is
four magic pills, in the corner of the screen that for a few seconds allow him to eat the
ghosts instead of being eaten by them.

The ghosts’ intelligence is used to surround Paco and it will increase more and more in each
level. You have two extra lives and two more when you get to 10.000 and 50.000 points.

You learn new tricks as you go on playing, for example that when you eat several ghosts
one after another you get double score.

You must press Space in the initial screen to start playing and you can control the packman
with the cursors .

BLAST’EM UP

PACO-MAN

Page 34

If it gets too hard, there is a little trick to apply when the ghosts are getting too close: press
the Space key and Paco, gathering all the energy he has left will run faster. Without this
small advantage it would be quite difficult to survive level 10.

The good thing about having a bottle caps race is that any adult that used to play this game
in the street (with real bottle caps) when he was a kid can enjoy the game again now and
not feel embarrassed by it.

What is a bottle caps race? You design a winding circuit on the sand and compete with
other friends to see who takes a bottle cap by hitting it with the finger to the finish line first.

This world championship will be run on an Olympic sand circuit, designed by the best
graphic artist at Hammer Technologies. The game is an original mix between a race car
game and a golf game.

From the main menu you can use keys from 1 to 3 to select one of the following three
options respectively.

Practice . To be able to be good at controlling the bottle cap and learn the circuit. You won’t
get anywhere without practice or effort, just like in real life.

Compete two players. This is one of the greatest challenges to have fun with a friend. The
first one that gets to the finish line will be the winner.

Compete against the computer. if your friends think they have better things to do, leave
them. The computer will challenge you to complete the circuit before it does it (and the
computer is specially wicked).

The game control is done with the following keys:

When two caps are playing, one against the other, each one will have a turn. At the
beginning of the game, who starts first will be determined at random.

If in a shot a cap gets out of the circuit, it will have to go back to its original position as a
penalty. So you better get accurate.

WORLD BOTTLE CAPS CHAMPIONSHIP

Left and Right . Choose the shot angle for the bottle cap.

Up and Down . To raise the bottle cap. This way you will be able to make faster turns; it is
hard but once you learn how to do it you’ll earn plenty of time since you will be able to
make the turn with a single move.

Space or Enter . To shoot. The more you keep the key pressed the more power the cap
will get. The power is indicated by a score keeper placed in the upper right side of the
screen.

Page 35

European billiards with an aerial view of the
table. Two players compete and each one
tries to reach a certain number of cannons
before the other. It is not possible to play
against the computer in this game.

The game is played in a table with no holes
and a cannon is achieved when the ball
touches the other two. In the original game,
both players use the same white ball,
another plain one and another with a point.
Both players must try to hit the opponent’s ball and the third
ball, the red one, in whatever order.

This game replaces the white ball with the point by a yellow
ball. The rest remains the same.

In the options menu of the game, by using the cursors and
Enter , or the mouse, you can select the number of points (cannons) you have to get to win
or you can start the game.

The first turn is always for the white ball. Pressing the left button of the mouse you can
use three modes, all of them necessary to make a shot:

In order to adjust the parameters correctly, you may access any of these modes as many
times as necessary (pressing the mouse button several times).

You can abort the game by pressing the key ESC. This a game that challenges your logic
and your skill.

TOTAL BILLIARDS

Aiming . This mode can set the shot angle by moving the mouse laterally. A blue circle
gives you some help, showing where the ball will hit for the first time

Spin . This mode can select, in the lower right side of the screen, where you want to hit
the ball with the cue. To do this you use again the mouse and you may now move it in
any direction. If you are able to control the spin of the ball you’ll be able to get many
cannons.

Shot . This last mode is to make the shot. To do that you have to move the mouse
vertically, keeping in mind that the program will detect how hard you have hit according to
the vertical speed of the mouse.

Page 36

Isn’t it weird that in the far future people still find it fun
to see how two opponents score goals one against the
other. The only problem is that they cannot find
anybody to run up and down a field: money has
disappeared and the professional sportsmen are not
going to play for free.

Luckily the multinational company Hammer
Technologies, which in this century builds high tech
hardware has solved this problem by constructing
weightless hovercraft machines for mass sports.

Soccer is called Helioball now and two hovercrafts play each other. Now the eleven players
of each team are inside their team hovercraft cabin, watching the game live on a Hammer
panoramic TV (the best one) at the same time they are playing. The hovercraft are
immense, the eleven players are not packed in there, their cabins are something like a small
cinema and even have sauna (so that the players can give the impression of being tired).

This game allows you to travel to the future and control one of this floating monsters which
push a mechanic ball (guess what brand it is?) to the goal. The other hovercraft will try of
course to push the ball to the other goal.

In the title screen, you can press any key to go to the options screen (except ESC, which
exits the game).

The mouse selects options as important as who controls each of the hovercraft or the game
time (depending if you are in a hurry). If both teams are controlled by the computer, the
game will be shown on TV (demo mode) and to switch channels (go back to the menu) you
have to press ESC. You may have two players with the screen divided. To start the game
you have to click over the button start.

The hovercraft control keys for both players are:

Everything is legal during the game. The most intelligent hovercraft (the one which scores
more goals) will normally win.

HELIOBALL

Player 1 . Cursors keys.
Player 2 . Q, A up/down and R, T left/right.

Page 37

This game has to be here. It a very simple adaptation
of soccer. There are many rules which are not here:
cards, penalty kicks, walls and so on.

Two teams play against each other in this game. You
can just watch the match (selecting the computer as
control of the first team) or play against the machine
using the joystick or the keyboard. A key (or the
mouse) must be pressed to access the options
screen.

Once in the screen, the program will always be controlled through the mouse. In the screen
you may select the type of control, the team colours, the screen resolution as well as the
possibility of changing the teams and the players names.

To change the type of control, you have to click on the icon on the upper left corner. By
default there is a keyboard. The only other possibilities are the joystick and a demo by the
computer.

To change the team’s colour, you have to click over that you want to change: socks, shorts
or shirt bands.

To modify the screen resolution, you have to press on the bar where the resolution is
specified and the program will alternate two possibilities: high resolution (640x480) and low
resolution (320x200).

To change the names of the teams and of their players you will access to another screen
where you may edit them. The game will save the colours and names set-up for future
executions.

There are also two buttons in the lower part, one to each side of the screen. The left button
is to go back to the introduction screen (from this screen you may exit the game by pressing
ESC) and the right button to start a game.

Names editing screen
To change a name you have to click on it. A blinking cursor will appear and you may then
introduce data by clicking with the mouse over the keyboard in the lower part or otherwise
via keyboard. To end you have to click with the right button of the mouse or press Enter .

To exit this screen, you have to click over the button on the lower left side.

Controls during the game
To control the selected player you use the keyboard or the joystick. The keyboard controls
are:

When you use the joystick, the first button will be used to shoot and the second to pass.

SOCCER

Cursors. To move players.
Control . To shoot or tackle another player.
ALT . To pass (with ball possession).

Page 38

For the throws, goal kicks, corner kicks, or center kicks you can use the player you want to
pass the ball by using the usual controls for moves.

Checkout is a chessboard game, fun even for those people who don’t like chessboard
games. It is a new game that has been created for DIV Games Studio. So nobody has an
advantage when playing.

It is a very simple game which uses artificial
intelligence techniques to calculate the moves the
computer makes. This makes it one of DIV most
advanced examples. So you shouldn’t try this list
until you are experience enough in the creation of
programs.

In a board of 6x6 squares, two teams of pawns
each starting from one corner have to try to get to
the opposite corner. The games are quite dynamic
since they are over in a relatively low number of
moves.

The game is divided into 5 levels, each of them with one more pawn at each side. You have
to go over through these levels untill you beat the computer in the last level.

You always start the first level with six pawns at each side. Every time you pass a level you
go to next but if you lose you have to go back to first level. If you lose in the first level, the
game will be over (this will happen at least the first time you play).

The game is always controlled through the mouse . In the first screen you can select start a
game, see the game instructions (the rules) or exit it.

At the beginning of the game you can choose if you want to play with white or with black.
White always starts the game.

To play you select a piece (by clicking on its square) and then to choose where you want to
move it to. The computer only allows to select the pieces which can be moved and the
moves which are legal according to the rules.

The computer will never play as it did before; it will change its style and he never makes
mistakes.

If you like the challenges which require a little bit of concentration, you’ll have great fun with
this game. You must not get frustrated at first, it’s absolutely normal to lose in the first three
or four games (or five or six or seven…).

CHECKOUT

Page 39

��������"

�������	��#���$

"

Page 40

This chapter will describe all the program’s options accessible from the main menu, and
separated in their different options menus. This chapter has been designed as a text to
consult, for the user to obtain quick information about the programs options.

This menu controls all the issues related to the listing of
the programs, their edition and their execution. It allows
us to open and save listings, execute a code or edit it.

The whole list of available keys to edit a program can
be seen in Appendix D . When there is more than one
program window, it will only be possible to edit in the
selected window. To select another one, it is necessary
to click on it.

Each of the options of this menu is now described.

New...
This option is used to start a new program (to start
writing a listing). The first steps are described in
Chapter 5. A dialog box, in which the name of the new
program must be specified, will appear. Thus, the
archive name for the program must be specified (up to
eight characters may be used). The extension PRG will
be automatically added. If an existing archive name is specified, the program will ask you
whether you want to overwrite the program. If you answer Accept , the existing program will
be overwritten. Finally, a new empty edit window will appear, ready for the new program.

Open program... (Direct key: F4)
This option is used to load a program. The name of the archive (with extension PRG)
containing the program must be specified in a dialog box, that may be selected either by
clicking on it or typing its’ name. When the program is loaded into the environment, an edit
window will appear with the program’s listing. The F10 key may be pressed to execute the
program.

Close
Closes the selected edit window. The program will ask for confirmation. If you have modified
the program and it has not been saved, choose Cancel and press the F2 key to save the
program before closing it, as the program is not automatically saved on closing the window.
Therefore, if a listing is modified and then closed without having previously been saved, the
changes will be lost.

2.1 The programs menu

Programs Menu

�� !���"���������	��#��$

Page 41

Save (Direct key: F2)
Saves the contents of the selected edit window in the corresponding archive of extension
PRG or, in others words, in the indicated archive on creating or opening the program. The
mouse pointer will depict an hourglass for a while, to indicate that the task is being
performed. If the aim is to save the program with a different name, in another archive, the
option Save as... of this menu must be used.

Save as...
Saves the selected edit window in another archive (with a different name). A dialog box will
be open, specifying the new archive with extension PRG. If the chosen program’s name
already exists, the program will ask for confirmation before overwriting the program with the
contents of the edit window. In fact, the extension PRG is not obligatory, but advisable.

Edit menu...
This option gives access to a new options menu, the programs’ edit menu. The options of
this menu are explained in section 2.2 of this book, where the basic commands of the
program’s editor are shown.

Execute (Direct key : F10)
Compiles and executes the program of the
selected edit window. If the program contains
any error, the system will place the edit cursor
on it, reporting a descriptive message in a
dialog with two options:

� Accept . This button must be clicked on when the error message has been understood,
in order to return to the edit window and correct it.

� Help . When the error message reported by the system is not understood, then this

button will create a help window in which the found error will be explained in great detail.

When Accept is clicked on, returning to the program’s edit, it is still possible to obtain
expanded help about the error by pressing the F1 key.

When the program has no errors, the system will be able to finish its compilation and
execute it. To return from a program, it is always possible to press the ALT+X key
combination.

Compile (Direct key: F11)
Compiles the program of the selected edit window. The program won’t be executed: this
option is only used to verify whether a program has any errors. If any error is found, then it
will be reported in the same way as in the previous option, being possible to access the
expanded help about it, if necessary.

Debug a program (Direct key: F12)
Debugs the program of the selected edit window step by step. To debug a program means
to execute it little by little, statement by statement or frame by frame, in order to verify all
that is being done, how the processes are created, how the variables change their value,
etc.

This option is normally used when a program does not work in the expected way, for any
reason. Thus, it is possible to find the exact point in which the error of a program is found.

Compiling A Program

Page 42

The Debugger of programs , described in section 2.10 of this book, will be accessed with
this option. It is also possible to access it in a program’s ordinary run time by pressing the
F12 key. However, in this case, the program will be debugged from the point in which it has
been interrupted, and not from the beginning.

The listing of the executed program will be seen inside the programs debugger, but it won’t
be possible to modify it. This is an advanced tool, that shouldn’t be used until the
fundamentals for DIV programming are correctly understood.

Create installation...
The last option of the programs menu is
used to create installation disks of the
games created in DIV Games Studio
automatically. It will be possible to distribute
the games with these disks and
independently install them in other
computers, without requiring DIV Games
Studio for their execution .

In order to create the installation program, the system must first compile the program to
verify that it does not have any errors and generate the game’s executable archive (an
archive with extension EXE).

Once it has been compiled, a dialog box will appear in which it is possible to configure the
installation program. Two switches will appear in the upper part of this dialog box. The one
placed to the right allows us to define whether subdirectories must be created in the
installation (otherwise, all the game’s archives will be installed in a single directory). The one
placed to the left defines whether a sound system setup program must be included.

About royalties. Important
It will be possible to distribute the games without restrictions, as Hammer Technologies
and FastTrak Software have no royalty or copyright in this case. Thus, it is possible to
use the programs created in DIV Games Studio with any purpose, including the sale of
their copyrights to distribution enterprises, direct sale, shareware, freeware, etc.

At the same time, authors are not obliged to include in their games any mention either to
DIV Games Studio, to Hammer Technologies or to FastTrak Software. However if you
choose to you may include the DIV Games Studio logo or a reference to it.

The archive DIV32RUN.EXE is the only DIV component required in the installations. This
archive contains the dynamic link library with the internal functions used in the programs.
This archive will be always included by the system in the performed installations.
DIV32RUN.EXE is a freeware program, of free distribution, whose lastest version can
always be found in DIV Games Studio’s WEB page at www.DIV-ARENA.com.

The user is also allowed to create and distribute utilities or auxiliary tools for this program
freely. With this purpose, the format of the archives used by DIV Games Studio is shown
in appendix E .

Installation Configuration

Page 43

Normally, this setup program is not necessary. If it is included, the system will add the last
SETUP_PROGRAM compiled in the environment. By default, this program is SETUP.PRG,
stored in the directory SETUP\ of DIV Games Studio, just in case the aim is to modify or
adapt it to a specific game.

In order to customise the installation, after the two upper switches this dialog box will allow
us, through a series of text boxes, to input the following information:

Finally, the Accept and Cancel buttons appear to start creating the installation program or
to exit the dialog without creating them.

The installations created in this way will use the Universal installing system of DIV Games
Studio, that is a freeware program, of free distribution. If the user wishes to use other
installation systems, the best way to do so is to start from a copy of the game installed with
this Universal installation system.

In the installed programs, there are no DIV windows reporting errors. At the same time, it is
not possible to access the Programs’ debugger on pressing the F12 key. If an execution
error appears in an installed program, the program will stop, returning to the system.

This menu has a series of essential options to edit, indicating
direct keys in all of them. Therefore, once they have been
learnt, it won’t be necessary to access this menu.

There are more edit commands together with those shown
here. They appear in the section Programs’ editor in
Appendix D (keyboard commands).The options included in
the edit menu are the following ones:

2.2 The edit menu

Name of the installed program. The name of the archive PRG will appear by default.
Name of the programmer. To input any message of the "Program by ..." type.
Copyright and name of the firm. Any message may be input.
Unit or directory where the installation program must be created. It If it is to be on
diskette then it is necessary to prepare enough formatted diskettes as to save the
compressed game on them.
Installation directory by default. This is the directory where the game will try to be
installed by default, unless the user changes it.
Message that will be used as loading instructions. The system will suggest a proper
message that indicates how the game must be executed after its installation.

Edit Menu

Page 44

Delete line (Direct key: Control+Y)
Deletes the program’s line on which the edit cursor is placed.

Tag block (Direct key: ALT+A)
Tags the beginning or the end of a text block. In order to tag a block, it is necessary to tag
both ends with this command. The order makes no difference. Tagging blocks of the
standard EDIT is also allowed, with the shift key and with the cursors.

Untag (Direct key: ALT+U)
Untags the text block. The blocks selected with the previous command are persistent. That
is to say, they remain until they are deleted or untagged. The blocks of the standard EDIT
are untagged by themselves, on moving the cursor.

Copy (Direct key: ALT+C)
Copies the tagged text block from the current position. First, it is necessary to tag the
original block and place the cursor in the position where it is aim to insert it. A copy of the
text will be made, remaining tagged just in case the aim is to make more copies.

Move (Direct key: ALT+M)
Moves the tagged text block to the current position. This task is similar to the previous one,
with the proviso that the original text will be deleted after being copied to the current
position. The moved text will also remain tagged. Thus, it is possible to continue to move or
copy it.

Delete (Direct key: ALT+D)
Deletes the tagged text block. It won’t be possible to undo this task. Thus, it must be used
carefully. If a big block is accidentally deleted, it is advisable to Open the program again
(without saving the existing copy), tag the deleted block in the new loaded window, and copy
it to the window in which it has been accidentally deleted.

Go to... (Direct key: F5)
Directly goes to one of the program’s
processes. That is to say, it places
the edit cursor of the program’s
window at the beginning of one of the
processes.

On using this command, a dialog box
will appear, containing a listing of the
processes found in the program. It is
possible either to select one through
the mouse or to press the ESC key to
remain in the current position.

A switch will allow us to indicate the
order in which the list of processes is shown, following either the order of appearance in the
program, or the alphabetical order.

To some extent, processes are similar to the functions of other languages, but in DIV they
are aimed at controlling the games’ graphics (also named sprites). That is to say, they are
basically blocks of the program that determine the performance of a graphic, or a kind of
graphics, of the game.

List Of Processes

Page 45

Search... (Direct key: ALT+F)
Searches for a text string in the program. This
option will be used to locate a point of the program
or a name inside it. A dialog box with a text will
appear. The sequence of characters that is intended
to be found must be inserted in this text.

This dialog contains the two following switches to
define the type of search that must be performed:

In this box, Accept must be clicked on in order to start the search for the text. The search
will be always carried out from the current position of the edit cursor. Therefore, if the aim is
to search for the text through the program, first the cursor will have to be placed at the
beginning of it, in line 1 and column 1 (this can be done by pressing Control+Pg.Up and
then Home).

Repeat (Direct key: ALT+N)
Repeats the last search. It searches again for the last text string that was searched for, from
the current position. That is to say, it searches for the next match in the program.

When there are no more matches of the searched text in the rest of the program’s lines, the
system will report it.

Replace... (Direct key: ALT+R)
Replaces a text string by another one in the
program. This option can be used, for instance, to
replace a name (of a variable, process, etc.) by
another one.

A dialog similar to the one used to search for a text
will be shown. But in this case, there will be a
second text box in which it is necessary to indicate
the text that is going to replace the indicated text in
the first one.

The two previous switches appear again, fulfilling
the same function. In order to replace a name by another one, it is advisable to activate the
Whole words switch.

The replacement of the text will be carried out from the current position of the edit cursor in
the program, ignoring the previous matches. When the text to be replaced is found, before
the replacement, the program will offer the following options in a dialog (highlighting the
found text in the program’s window):

Search For A Text String

Whole words . Indicates (when activated) that the inserted string must be searched for as
a complete word and not as a part of a bigger word (for instance, 'word' must not be
found if you write 'wo').

Upper case/lower case letters. Indicates that the text must exactly be found as it has
been written, distinguishing between upper case and lower case letters.

Replace Text

Page 46

To press the ESC key or to close this dialog will be interpreted by the program as if the aim
was to finish the replacement task.

This menu controls the tasks dealing with the colour
palette that DIV Games Studio is using. It allows us to
load and save palette archives (with extension PAL), edit
it, put it in order, etc.

The essential concepts about the colour palette are
included in chapter 3. In the environment, there is always
only one active colour palette. The last option of this
menu (palettes \ show palette) must be used to display
it. It is advisable to have the active palette visible in the
environment to get orientated when it comes to
performing tasks with it.

It is advisable to define, at the beginning of a new project (game), what is the colour palette
to be used as, during the game, all graphics displayed on the same screen must have been
created with the same colour palette. Otherwise, they would be displayed incorrectly.

Open palette...
Loads the colour palette from an archive. On activating it, a dialog box will be opened, in
which it is necessary to indicate an archive of one of the following types: palettes (PAL),
graphics files (FPG), bit maps (MAP, PCX or BMP) or letter fonts (FNT). If there are
graphics loaded in the desktop of DIV Games Studio, the system will ask whether they must
be adapted to the new loaded palette. If the answer is Accept , they can lose quality.
Therefore, the alternative is to close them first and reopen them later.

Save palette...
This option allows us to save an archive with the current colour. A dialog box will be opened.
Inside it, it is necessary to indicate the archive name in which the palette is going to be
saved (for that, archives with the extension PAL will be used). It is not possible to save the
colour palette in graphics files, maps or fonts. Moreover, information about the colour rulers
defined inside the graphic editor is stored in the palette archives .

2.3 The palettes menu

Yes. To replace the text in the highlighted position and continue to search for.
No. Not to replace the highlighted match, but continue to search for.
All . To automatically replace the rest of the matches, including the one that is highlighted
currently.
Cancel . To cancel the text replacement’s task (no more replacements will be performed).

Palette Menu

Page 47

Edit palette...
On choosing this option, a dialog box with
the palette editor will be opened. Inside it, it
is possible either to modify the current
palette of the system or to define a new one.
While the palette is edited, the colours of the
desktop may appear incorrect. This problem
is normal and it will be resolved on exiting
this dialog box.

All the colours of the active palette appear
occupying the greatest part of the box. A
small square will tag one of these colours;
this is the colour selected for editing. In
order to select another colour, click on it.
The following information about the chosen
colour appears in the right part of the box:

Three switches with the following function appear in the lower part of the box:

Finally, three buttons allow us, from left to right, to validate the performed palette edit, undo
the last modification and cancel the edit (undo all the changes made since the editor was
entered).

Palette Editor

Number of the colour’s order within the palette. This number appears as a decimal
between 0 and 255, and as a hexadecimal, between 00 and FF.

The red, green and blue components of the colour, which will be numbered from 0 to
63.

Three vertical scroll bars , that can be used to modify the three components of the
colour, in the same order as in the previous case.

Range : It is used to define a gradual colours’ range. It is necessary to press on the first
colour of the range and define it with the scroll bars. Then, do the same with the last
colour of the range and finally (with the last chosen colour) select this switch and click
again on the first colour. The system will define the intermediate colours with a gradual
range.

Copy : To copy a colour to another position of the palette, it is necessary first to choose
the colour, then this switch and, finally, the destination position.

Change : It works in a similar way to the copy function, with the proviso that it will only
exchange the origin and destination colours, instead of copying the origin colour to the
destination one.

Page 48

Arrange palette...
Allows us to arrange colour palettes. This option
is useful to edit maps coming from other
graphic or rendering programs, and having a
colour palette out of order. This task will
facilitate these maps to work inside the graphic
editor, making it easier to locate the colours. A
dialog box will show four possible orders of the
palette’s colours. The order considered more
appropriate must be clicked on. This dialog box
finishes with two buttons that allow us to
confirm this selection or cancel it.

Merge palettes...
This is an advanced task, that allows us to
create one colour palette from two. It must be
used when the aim is to use graphics with
different palettes simultaneously in a game.
First, one of the palettes must be loaded in the
environment and then, this option must be used
to select an archive with the other one.

The system will create a mixed palette from
both. After this task, the best thing to do is save this palette in a palette archive (PAL) to
have it located and not to lose it. After that, the graphics must be loaded again with the
previous colour palettes, indicating that their palettes must not be loaded, but they must be
adapted to the palette of the system. Finally, once it has been verified that the graphics of
both palettes look good with the new palette, they are saved again in
their respective files.

Display palette
Displays the active colour palette in the environment. This option will
create a new window in the desktop, where it will be permanently
displayed. Only one active colour palette can exist at each moment.

This menu controls the tasks related to the maps. The maps,
also called graphics or bitmaps, are simply frames of any
size that can be used in the games as backgrounds, sprites,
objects, screens, etc. This menu gives access to the loading
and saving of maps in the disk, as well as to the graphic
editor, which is the tool used to create or modify these
frames. Many maps can be handled, loaded in the desktop,
etc. The only limitation is that all of them must use the same
colour palette. If two maps have to use different palettes, one
of them must be closed before opening the other.

Besides the options of this menu, it is possible to perform
some other tasks with the maps windows. In order to drag

2.4 The maps menu

Palette Organiser

Display Palette

Maps Menu

Page 49

them, it is necessary to click on them with the left mouse button and, without releasing it, to
move the mouse to the destination position. These tasks are the following ones:

Several options of this menu only interact with one map, even if there are a lot of them
loaded. The action will be performed on the map selected among all of them. In order to
select a map, the left mouse button must be clicked on it.

New...
Creates a new window with a graphic map. The only
necessary information to create a new map is to know its
width and height in pixels, which will be requested in a
dialog box. Any size, from 1x1, is valid with the only
limitation of the available memory in the system. After
having selected the size and clicked on Accept , a new
map window will appear empty (in black) in the desktop.
In order to edit the contents of this window, it is possible
to double-click on it with the left mouse button.

Open map...
Loads a map from a disk archive. The archives of extension MAP are the own format of DIV
for the maps but, with this option, other archives with extension PCX and BMP can be
imported, providing that they are frames in 256 colours .

Close
Closes a window with a map. The system will ask for confirmation before closing a window
with a map. If the aim is to save the contents of the window, the Save... option must
previously be used in order to update the disk archive that contains the frame. Once a map
has been closed, the only way to recover it is to load the archive again (if it has been saved
previously).

Close all
This option closes all the map windows loaded in the desktop, except those that have
been minimised . Previously, the system will ask for confirmation. This option is useful
when the desktop is filled with maps that have been included in a graphics file, or maps of
the generator of explosions, to prevent them from having to be closed individually.

Save
Saves the current contents of the selected map in its archive. The mouse pointer will
momentaneously depict a hourglass, to indicate that the task is being performed. If the map
had no previous archive, the system will show a dialog box in which, a name for the new
archive must be specified. The Save as... option of this menu must be used to save a map
in another archive.

Make a copy of the map . Drag the window to the desktop’s wallpaper (to a screen zone
in which there is no window).
Paste a map on another one . Drag a map window to another one. The graphic editor
will be entered, being then possible to paste the map in the desired position and
conditions.
Close a map . Drag the window to the bin (first, the bin must be activated with the option
system \ bin). The system will close the map without asking for confirmation.
Include a map in a graphics’ file . Drag the map window to the file window.

New Map

Page 50

Save as...
This option allows us to save the contents of the selected map window in a new disk
archive. A dialog box, in which the archive name must be specified, will appear. Archives
MAP, PCX or BMP can be saved, depending on the extension given to the archive name.
By default, archives MAP, the own format of DIV, will be saved. Only this format can be
used in the programs created in DIV and it is not possible to load frames of archives PCX or
BMP in them.

Re-scale...
Re-scales the selected map to a new size.
That is to say, increases or reduces the
frame’s size. The new size must be included
in a dialog box that will appear with two
switches:

The rescaling data for the horizontal and vertical axes must be included in the texts boxes
Width and Height . Accept must be clicked on after the indication of these values, and the
system will create the new map.

Edit map
Edits the selected map. The user will directly enter the graphic editor. This task can also be
performed by double-clicking on the map window with the left mouse button. The right
mouse button or the ESC key must be pressed to exit this editor.

Explosions generator
This option gives access to a dialog box to
automatically generate a series of frames for an
explosion. Each of the frames will be created in an
independent map. The maps will be created with
the colour palette active in the environment. Later,
if the aim is not to preserve the created maps, it
can be advisable to use the Close all option to
eliminate them.

Two text boxes appear in the upper part of the
dialog. The Width and Height of the maps to be
generated must be included in pixels in both
boxes. The greater these maps are, the longer the
generator will take to complete the sequence of
frames producing the explosion.

By clicking on the boxes appearing below the text Colour a dialog will be displayed with the
colour palette, and thus, it will be possible to select the initial (the darkest one), intermediate
and final (the lightest one) colours of the explosion, respectively. The generator will use as
many intermediate colours as are found in the active palette.

Re-Scale A Map

Percentages . By default, the new size will be specified in pixels. But it can be indicated in
percentage, as a integer, if this switch is activated. For instance, 100 is the original size,
50 is half and 200 is double.
Ranges of gray . The new copy of the map will be created in colour by default. However,
this switch may be activated to create it in black and white.

Generates Explosions

Page 51

Three switches named Type A , Type B and Type C allow us to choose among three
different algorithms to generate the explosion, in order of complexity: the first type is the
easiest and more homogeneous one, and the last type is the most complex one.

Next to these switches, two other text boxes appear. The number of frames that the
complete sequence of the explosion must comprise, have to be included in the first one,
named Frames . The second text box defines the effect of Bump (Granulation) applied to
the explosion. The higher this value is, the louder the "noise" or "vibration" of the explosion
will be.

Each time an explosion is generated, it will be different, even if exactly the same parameters
are included in this dialog box. For that reason, it is advisable to carry out several tests until
the definitive sequence is obtained.

The possibilities of animation of the graphic editor can be used to display the animated
explosion. For that, it will be necessary to arrange the windows containing the explosion
frames (placing them one on each other, in order), editing the first one (double-clicking on it)
and, once the editor has been entered, use the TAB and Shift +TAB keys to see the
animation. The Z key can be used to vary the scale at which the animation is displayed and
ESC to exit the graphic editor.

This menu controls the tasks performed with the graphics files, such
as to create new files, or to load (open) their maps. The graphics
files FPG are archives containing libraries or complete collections of
maps.

The only actions of files that can not be performed through this menu
are the following ones:

Files are not loaded in the computer’s memory, as they normally occupy a lot of space. On
the contrary, their information always remains in the archives with extension FPG of the
disk that contain them. Therefore, there is no option to save the files, as they are always
stored ; that is to say, what is displayed on screen is exactly the same as what is stored in
the archive of the disk.

New...
Creates a new file FPG on the disk to store graphics maps with the active palette in the
environment. The archive name must be specified in a dialog box. The system will

2.5 The files menu

Files Menu

Add maps to a file , This can be done by dragging the maps windows to the file’s
window.
Copy maps from a file to another one . For that, they must be dragged from the list of a
file to the list of the other one.

Important : All the maps of a file must use the same colour palette . Those maps using
a different palette must be adapted to the palette of the file, in order to be included in it.

Page 52

automatically add the extension FPG to it. If the name of an existing file is specified, it will
be asked whether the aim is to overwrite it. If the answer is yes, all the maps previously
stored in the file will be deleted.

Open file...
Opens a new window from a FPG file. The name of an archive with extension FPG must be
selected in the dialog box of archives managing. If the file has a palette different from the
one that is active in the environment at that moment, as options the system will offer either
to load the new palette or to close the file. It is also possible to open the file without loading
its palette but it is not recommended, unless you are an expert user.

Close
Closes the selected file window. As the contents of the files is always stored on disk, their
information (the maps) won’t ever be lost. For that reason, the system won’t ask for
confirmation in order to close a file, as it can always be recovered by opening it again.

Save as...
This option allows us to save the selected file with a different name (in another archive
FPG). That is to say, a copy of the file with a new name will be made. A dialog box will
appear. The name of the new archive FPG must be included in this dialog box. Once again,
if the name of an existing archive is indicated, its contents will be replaced by the contents
of the file selected in the environment.

Load tags
Loads the maps tagged in the selected file in the desktop. On using this option, the switch
Tag/Drag of the window’s file must be tagged, being thus possible to previously tag the
maps intended to be loaded (opened) from the list included in the file (by clicking on them
with the mouse). It is possible to untag maps by clicking on them again. As many maps
windows as tagged in the file will be created. This option is useful to modify these maps in
the graphic editor and then, to drag them again to the file.

In order to load maps individually, one by one, they can directly be dragged from the file
window to the desktop.

Delete tags
Deletes the tagged maps in the selected file. This option is used to eliminate maps from a
file when they are not necessary any longer. The maps have to be tagged previously,
exactly the same as in the previous option. Once these maps have been deleted, it won’t be
possible to recover them.

To individually delete maps, they can be dragged from the file window to the system bin
(which is shown through the option system \ bin).

Page 53

This menu allows us to perform actions related to the letter
fonts of the games (or letter types), including the access to
the generator of fonts used to create new fonts. The letter
fonts are used inside the graphic editor and in the games,
to write texts.

At the same time, the fonts are shown in small windows
that indicate the set of characters they have defined. The
characters are divided into the following groups: numeric
digits, upper case letters, lower case letters, symbols and
expanded characters.

To visualise a sample of the characters contained in a font,
it is necessary to click on its window with the left mouse button.

The fonts are saved in the archives disk FNT and adapted to the palette of the environment
when it is loaded and when the active palette is changed. In order to see a font with its
original palette, the palettes \ open... option must be used, indicating the name of the
archive FNT.

The fonts windows always correspond with a FNT archive. Therefore, there is no option to
save the fonts, as they are always saved . That is to say, what is shown on screen is exactly
what is saved in the disk archive.

Generate font...
This option will create a new window with the
generator of letters fonts. New types of letter for
the game can easily and quickly be created with
this tool. The following steps must be followed to
generate a new font:

� First, select the new archive FNT in which the
created letter font must be saved. For that, it
is necessary to click on New font , in the
button marked ellipsis. A dialog box will
appear to include the archive name. By
default, the font will be generated in the
archive NEWFNT.FNT valid to carry out tests.

� Second, choose the source font. A dialog will

be displayed by clicking on Source , in order
to select the font type. One of the archives
with extension IFS of the list must be selected. A sample can be seen in the dialog itself
by clicking on any of them. Once the desired type has been found, the Accept button
must be clicked on.

� In the upper right part of the box, two input text boxes allow us to define the size of the

font characters. Their Width and Height must be defined as any number ranging from
16 to 128. For sizes smaller than 16x16, only the numbers shown in the adjoining list
(8x8, 10x10, 12x12 or 14x14) can be used. They can be selected on clicking on the list.

2.6 The fonts menu

Fonts Menu

Font Generator

Page 54

For fonts bigger than 16x16, two different values for width and height can be indicated,
becoming distorted the original appearance.

� In the section Font (left central) either to select the ink colour for the font by clicking on

the colour box or to drag a map with the texture to this box. If a texture is in this way
defined as a filling of the letters font, it will be possible to select in the Mosaic switch
whether this texture must cyclically be repeated. By default (without the switch activated)
the texture will be re-scaled to the size of the font characters. That is to say, in order to
use a texture in a font, it is first necessary to open or create the map with the texture and
then, to drag it to the fonts generator.

� In the section Outline (middle central) it is necessary to define whether an outline must

be created in the fonts characters. If the answer is yes, the outline’s width in pixels must
first be specified, by using the buttons - and +. Next, the direction of the outline’s lighting
can be specified where a X appears between other two buttons - and + (the symbol X
indicates that the outline is not going to be lighted). Finally, the colour or texture of the
outline will be specified in the same way as in the previous section.

� In the section Shadow (right central), the shadow of the characters is defined. First, it is

necessary to indicate its horizontal shift (in pixels), keeping in mind that the positive
numbers are to the right, and then the vertical shift (now, the positive numbers are in the
lower part). If both shifts are left at zero, no shadow will be created. Later, it is necessary
to choose the colour or texture for the shadows again. A dark colour is normally
specified as the filling of the shadows, but not the first colour of the palette , as this is
the transparent colour and consequently, it is not displayed.

� With the button called Test , it is possible to see a sample of the font at any moment.

Thus, the previous parameters can be adjusted better. The text for the demonstration
can be input in the text box next to this button.

� Finally, the Generate button must be clicked for the system to create the new characters

font in colour in the indicated archive FNT . Then, a confirmation dialog will appear. In it,
it is necessary to indicate which are the five sets of characters that must be included in
the font, activating the corresponding switches . All the switches must be activated to
create a complete font. For instance, if only the numeric digits of the font are going to be
used, it is better to create it only with these characters, as the archive FNT will thus
occupy less space on the disk and in the computer’s memory.

Once the process has finished, a new font window will appear in the environment’s desktop
The font generator remains in the desktop until its window is closed.

The button Close located in its lower right corner can be clicked to close the generator or
cancel the process to create a font. However, if the aim is to use it later, it will be better to
minimise the generator’s window. Thus, the information inserted in it up to then won’t be
lost.

Open font...
This option allows us to open a FNT archive with a characters font previously created to
perform some tasks with it or to use it in the graphic editor. A dialog box to manage archives
will allow us to select the archive. Then, a new font window will be created in the desktop. A
sample of the font may be displayed by clicking on this window.

Page 55

Close
Closes the selected font window. Confirmation won’t be asked for, as the contents of these
windows is always updated in the disk. Therefore, the font can always be recovered by
loading the FNT archive again. Inside the graphic editor, in the option labeled write text, the
font of the programs editor will be used when there is not any font in the desktop of the
environment.

Write text...
Creates a new map with a text written with
the selected font. A dialog box will appear.
The text that must contain the graphic map
has to be inserted in this dialog. The system
will create a new map window with this
written text. This option won’t be available if
there is no selected font window in the desktop. This option is useful when the aim is to use
a characters’ font in a game only to display one or two messages, as the graphics with
these texts will occupy less space than the complete characters font.

Export map
The options of exporting and importing a font from a map will allow us to manually retouch
the fonts created with the generator in the graphic editor. This option will create a new map
window with all the characters of the selected font. Then, to edit the characters of the font, it
is necessary to double-click on the map window with the left mouse button, entering the
editor. It is very important to respect the external margins of the characters. That is to say,
each character can be retouched, but respecting its limits. The characters not included in
the font will be represented in this map with a pixel of colour 0 (the first colour of the palette,
that is to say, the transparent colour).

Import map
This option allows us to obtain again the archive FNT from the map with the characters. If
the map is not a font with all its characters, this option won’t be able to obtain the archive
FNT from it.

The maps with fonts have a format that must be respected, with a colour defining the
external margins (any colour not used in the font may be chosen) and 256 squared boxes
with the characters defined in the font, arranged according to their ASCII code, indicating
the undefined characters as 1 by 1 pixel boxes.

If, during the characters’ edit in the graphic editor their margins have been modified, this
option won’t be able to obtain the font again. The system verifies that there is an external
colour in this map, and inside it, 256 boxes arranged from left to right, with a margin
between them of at least one pixel (of the external colour).

If these rules are observed, even letter fonts may be created from zero in the graphic editor
in order to import them later with this option.

Write Text

Page 56

This menu allows us to control the sound effects’ windows and
perform the essential tasks with them, such as loading effects,
saving them with a different name or listening to them.

The sound windows always correspond with an archive PCM of
the disk. Therefore, there is no option to save the sounds, as
they are always saved . That is to say, what is shown on screen
is exactly what is stored in the disk archive.

Open sound...
Loads a sound effect from a disk archive. A dialog box will allow us to indicate the name of
an archive with extension PCM or WAV. However, when an archive WAV is loaded, the
system will automatically create another archive with the same name but with extension
(and format) PCM, as it is the only allowed format for the sound windows. Then, the new
sound window showing the contents of the archive PCM, to which it represents, will be
created.

Close
Closes the selected sound effect. Confirmation won’t be asked for, as the contents of the
window is always updated in the disk archive (the sound effects can not be edited in this first
version of the program). For that reason, this window can always be recovered by reopening
the disk archive.

Save as...
Saves the selected sound effect in another archive, with another name. A new dialog box, in
which the name of the new archive PCM must be input, will appear. It won’t be possible to
export sounds as WAV files. If the name of an existing archive is specified, the system will
ask for confirmation before overwriting the contents of this archive.

Test sound
Emits the sound effect through the computers’ audio system. Then, the sound effect
selected in the desktop will be heard. This action can also be performed by clicking on the
sound window.

Actions dealing with DIV’s windows’ environment are
controlled from this menu. Thus, it is possible from this
menu to configure their appearance (videomode, fonts,
colours, wallpaper, etc.), access auxiliary utilities, ask for
information about the system or exit it.

2.8 The system menu

2.7 The sounds menu

Sounds Menu

System Menu

Page 57

CDiv Player
This option will show the CD-Audio Player on
screen. The reproduction of music CDs in
the computer’s CD-ROM driver can be
controlled with this tool. Information about
the selected song and the time is shown in
the upper part of the CD Player’s window.
The control buttons, from left to right, allow
us: to skip back the previous song, rewind,
stop, play, fast forward and jump ahead to the next song.

The reproduction of a song will go on until the end of the CD. If the CD Player window is
closed, once the reproduction has started, it won’t stop. However, the CD Player can also be
minimised.

Clock
This option will display a clock showing the current time on screen. This
clock will appear in a window that can be left active all the time, dragged to
another position or closed. If the window is minimised, the text of its icon will
continue to show the updated time.

Bin
This option will show the bin window in the desktop. The bin is used to delete maps windows
or files windows’ maps dragged to it. Confirmation won’t be asked before deleting the maps
dragged to the window.

Videomode... / Wallpaper... / Configuration
These three options allow us to configure the appearance of the windows’ graphic
environment, and they are explained in section 1.3 of the first chapter in this book.

System information
This option will show information about the
resources available in the system in a dialog
box. This information will be related to the
available free memory and the occupied
memory by the loaded map windows. It will
also indicate, in percentage of resources, how
many objects, maps and windows of any kind
are loaded in the desktop out of the total that
can be loaded.

About ...
This option shows the introductory dialog box containing the information about the current
version of the program.

Shell MS-DOS (Direct key: ALT+S)
Executes a session of the MS-DOS operative system, without exiting DIV. It will be possible
to use commands of this system and programs that only require base memory. EXIT must
be keyed to finish the session of this system.

CDiv Player

Clock

Information About The System

Page 58

Up / down cursor . To shift the text one line up or down.
Pg.Up / Pg.Dn . To shift the help text page by page.
Backspace . To go to the previous help page (this key is used to delete the previous
character).

Exit DIV (Direct key: ALT+X)
Exit the DIV Games Studio’s environment. The system will
ask for confirmation before exiting definitively. By default,
the system will save the contents of the desktop for
following executions of the environment. Therefore,
information that has not been saved before exiting won’t
be lost .

The index of this help hypertext of the environment can be accessed from the main menu by
selecting the last option.

The help windows are controlled with the mouse, by using the vertical scrolling bar placed to
its right to move through each of the help pages. For that, the following keys can also be
used:

The text is shown in the help windows in three colours:

Besides texts, frames or examples may appear in the help windows. The examples are
programs starting with a blank line and containing dark blue texts. To extract the examples
from the help windows, it is necessary to click on their initial blank line. Then, they can be
compiled and executed by pressing the F10 key and to abort their execution, it is necessary
to press ALT+X .

A plain button appears in the lower right corner of the help window. This button can be used
to expand or reduce the window’s size, by clicking on it and dragging it up or down.

2.9 Help option

Exit Screen

Black . This is the main part of the help. Most of the text is shown in black in the help
pages.
Gray . Those texts aimed to be enhanced as they contain specially important information
(such as the bold typed text of a book) will appear in gray colour.
White . The texts or words referred to concepts or terms explained in another help page
will appear in this colour. To access this page, it is possible to click on them, and then, to
use the Backspace key to return to the previous page’s point in which the reading was
stopped.

Page 59

The programs debugger is an advanced tool, whose use first requires a correct
understanding of all the programming concepts explained from chapter number 5 of this
book.

The debugger is a dialog box that can be
activated in programs’ run time for one of the
following reasons:

� The program was entered with the option
programs \ debug program .

� The F12 key was pressed in a program’s
run time.

� An error of execution arose in the
program.

� A debug statement was found in the
executed program.

This tool allows us to execute the program
statement by statement, verifying the value
taken by the different program’s data when necessary. It is useful because, on checking the
program’s execution step by step, it can find the mistakes eventually made by the programs.

As it is a dialog with a great deal of information, each of its sections are now described
separately.

Upper information line
Two messages are reported in the upper part of the window. To the left, there is one
indicating the number of processes active in the program out of the total that can be
created . For instance, if it reports 23/3201, it means that there are 23 processes active in
the program and that up to 3201 could be created before using up the available memory for
processes.

The maximum number of processes vary from some programs to others, depending on the
number of their local and private variables.

The identifying code of the process selected in the list, as well as its current state (normal,
killed, asleep or frozen) are indicated to the right.

List of active processes
This list appears in the upper left part of the debugger with a scrolling bar to its right. All the
active processes in the program are shown in it. Active processes are all those processes
that have been created and that still have not been disappeared. The following information
appears for each process:

The process name in the program.
Its identifying code in brackets (occasionally, there is no space to put it entirely).
A letter indicating its state (A-Normal, K-Killed, S-Asleep and F-Frozen).
The percentage of accomplished execution for the following frame.
The scrolling bar must be used to move through the processes’ list.

2.10 Programs debu gger

Programs Debugger

Page 60

One of the processes appears tagged with a black band. This is the process about which
information is shown in the right part of the window (close to this list of processes). This
process may be selected with the mouse, by clicking on the list.

It is very important to distinguish between the process in execution and the process about
which the information is shown, as they don’t have to be equal necessarily. For information
about the process in execution to be shown, it is necessary to select it (that of the white
arrow) by clicking on the list with the left mouse button.

Information box about the indicated process
To the right of the previous list, information about the program tagged with a black band in
the list (not the process in execution) is shown. Its identifying code and its state was shown
in the uppermost line.

The complete process name is shown in a dark background’s box. Below it there is another
box with the graphic of this process (when it is bigger, it will be reduced to fit this box).

The button See data appears to the right of the graphic. This button allows us to access
another dialog box in which all the data of the process can be consulted and modified. It will
be later explained in the section Inspecting data .

The (x,y) coordinates of the process, the system of coordinates used by it (referred to the
screen , to a scroll or to a mode 7) and the mirrors or transparencies applied to the graphic
of the process are always shown following this button.

Finally, four buttons allow us to access the father process (the process that called the
selected one), the son process (last process called by the selected one), the younger
brother (smallbro , the last one called by the father before it) and the elder brother (bigbro ,
the following one called by the father after it). If these buttons don’t lead to any other
process, that is because there is no process with that relationship.

Partial execution controls
Two buttons called Exec.Process and Next FRAME below the previous information box
allow us to execute the program partially.

Execution of the process . This first button allows the program to continue just to the end
of the process currently under execution (the one pointed with the white arrow in the list). All
its statements will be executed until it reaches the next FRAME (until the process is ready
for the next frame of the game).

Next FRAME . The second button will execute the program to its next frame, first executing
all the pending processes and displaying the next frame of the game (in the debugger’s
background). The debugger will stop in the first statement of the first process to be
executed in the new frame. It is possible to displace the dialog box with the debugger (by
dragging its title bar) in order to contemplate the result of the previous frame of the game.

Important : One of the processes appears with a white tip arrow pointing out its name.
This is the process that is being executed in the program currently. Therefore, the next
statement of the program will belong to this process.

Page 61

Debugging box of the program’s listing
The code of the program is shown in the lower part of the debugger. The identifying code of
the process under execution (again, the one pointed with the white arrow in the list) appears
in the left upper corner. Below it, there are three buttons and, to its right, the code window.

In the code window , another white arrow indicates the line including the next statement to
be executed by the process. It can be noticed how the statement also appears highlighted in
white from the rest of the code.

This window’s contents can be displaced with the cursors keys. The program’s lines can be
tagged with a black band. Nevertheless, it is not possible to modify the program from the
debugger. Indeed, to modify the program it is necessary to finish its execution (which can be
done by pressing ALT+X) and return to the editor of the environment.

The first button called Process allows us to go in the code window to one of the processes
of the program directly. A list containing all the processes found in the program will appear,
being necessary to select the desired process with the mouse. However, it won’t change the
process currently under execution, which will continue to be the same.

The second button allows us to establish a Breakpoint in the program. For that, it is first
necessary to tag the line of the listing with the black band. On reaching this line (with the
cursor), the program must stop. Then, this button must be activated making the line appear
in red.

Breakpoints can not be established in all the lines of the program, but only in those for which
the executable code has been generated (in which any action is performed).

Many breakpoints can be established in the program. To execute the program until it
reaches one of these points, suffice will be to close the debugger or press the ESC key.

To disable a breakpoint, it is necessary to select the line and click on the same button
again.

The last button, Debug , is the one that really allows us to debug the program statement by
statement. Every time it is clicked on, one of the program’s statements will be executed.
When a process finishes its execution, or completes a frame, you will pass to the first
statement to be executed of the next process.

Inspecting data
By clicking on the button Inspect of the
programs’ debugger it is possible to access
this other dialog box, in which the values of
the program’s data can be consulted (and
even modified) in the point in which it has
stopped, normally with the aim of carrying
out tests in it.

Most of this box is occupied by the data list.
Each of them is shown with its name and
numeric value. This list always appears in
alphabetical order.

The data set appearing in this list can be selected through a series of switches. The two
upper switches define the two following sets.

Dialog Box To See The Data

Page 62

Predefined . When this switch is activated, all the data predefined in the language will be
included in the list. Thus, it will be possible to access the predefined local data (such as x, y,
angle, size ...), the predefined global data and the predefined constants.

Defined by the user . This switch selects all the new data defined in the program. These are
the specific constants, variables, tables and structures of every program.

Besides selecting the data depending on whether they are predefined or new, they can be
selected according to the context in which they have been declared, with the following
switches.

The list of data can be displaced with the vertical scrolling bar or with the cursors and
Pg.Up / Pg.Dn keys.

The button Change allows us to modify the value of the selected data; only the constants
can not be modified. A new dialog will appear with a text box in which the new value of the
datum must be input. Any datum of the list can be selected with the cursors or clicking on it.

Below this button, there are other two buttons with the symbols - and +. They are used to
modify the index of tables and structures , which can also be done with the right cursor
and left cursor keys. The table or structure whose index is intended to change must
previously be selected in the list. This is the way to observe or modify any element of a table
or structure

Finally, a series of buttons appears in the lower part of this dialog. These buttons,
mentioned below, allow us to display the value of a datum in a specific way:

CONST. This switch is used to include the constants in the list, even if the constants are
not data, but synonymous of a numeric value. Therefore, they can not be modified.

GLOBAL . On activating this switch, all the global data (accessible by all the processes)
will be included in the list.

LOCAL . When this switch is activated, the local data (that is to say, the data that all the
processes of the program have) will be included in the list.

PRIVATE. This switch selects the specific data of the process tagged in the debugger
window to include them in the list. These data are exclusively for the program’s internal
use.

Angle . This button allows us to display the datum as an angle. The angles are specified
internally (in the programs) in degree thousandths. The value of the datum will be
displayed as an angle in degrees and radians.

Process . If the datum is the identifying code of a process, on selecting this display
filter, the name of this process will appear in the list as a value of the datum.

Page 63

Once the display filter of a datum has been established, it will remain during the rest of the
program’s execution. The same button must be double-clicked to display again the contents
of the datum as a numeric value.

Text . When the datum is a text or a pointer oriented to a text (to a literal of the
program), that text will be displayed in the list by clicking on this button.

Boolean . If a datum contains a logical value, on applying this filter to it, in the upper list
will be shown whether it is false or true . In the language, on evaluating them as logical
conditions, the odd numbers are considered true, and the even numbers are considered
false.

Page 64

Page 65

��������%

&��������������

%

Page 66

The graphic editor is described in chapters 3 and 4. This tool is used to create the graphics
of the games. The first chapter offers a program’s generic view and explains all the
concepts and terms necessary to understand how it works.

The graphic editor is the tool used to paint the graphics of the games. Any picture may be
created with the mouse, the colours of a palette and a little skill. Painting with the computer
is quite different from painting on a sheet of paper. Less accuracy and skill, but more
patience are required.

The editor only works with maps windows
(those that any kind of graphic contains),
and the easiest way to enter it is by
double-clicking on a desktop’s map with
the left mouse button. Once the editor has
been entered, the picture is expanded,
the mouse pointer will change and a
horizontal tool bar will appear with several
icons and colours. The editor can be
exited in different ways: by closing the
tool bar, by pressing the ESC key or with
the right mouse button.

This graphic editor is a very
comprehensive tool. However, it can not
replace many of the commercial programs
specifically designed to create graphics. For that reason, it is possible to import maps in
PCX or BMP formats (that are widely spread among the graphic utilities). Thus, those who
want to use other tools to create graphics are allowed to use the frames created with other
programs in DIV Games Studio.

Despite that, it is advisable to read these chapters on the graphic editor, as many tasks will
be easier and faster from DIV Games Studio than from other programs.

If you do not have other programs to create frames, do not worry, as DIV’s graphic editor
contains many powerful paint tools. The features shared by many of them are better than
those of specific paint programs. Thus, it won’t be necessary to use any other program to
create the games’ frames and graphics.

Before accessing this chapter, which describes the basic painting concepts and terms, it is
necessary to know the use of maps and maps files described in sections 2.4 and 2.5.

3.1 General Conce pts

�� !���%������&�������������'������������

Graphics Editor

Page 67

For instance, to carry out the first tests, load the colour palette by default (palettes \ open...
indicating the archive div.pal) and create a new map (maps \ new...) of any size in pixels,
such as 200x200, and access the editor by double-clicking on this map.

A quick glance at the editor
The tool bar is provided with a little title bar to the left with which, it is possible to drag it at
any screen position, preventing thus
the painting zone on which you are
working from being hidden.

The first icon appearing depicts three dots (this is the dotting bar). Click on this icon to open
a dialog showing the different icons of the available modes. Select the upper right icon of
this box to use the pen bar.

The picture will appear in black. To start painting, first select a colour, either within the bar’s
range (at that moment of gray colours), if you wish, or any colour from the palette by
pressing the C (colour) key to make the colour selection’s dialog appear. In this box, you
can select either a colour from the main palette or, by clicking on the right part, the range
that must appear in the tool bar.

The pointer coordinates in respect of the picture appear to the right of the pen icon. Then,
an icon with a magnifier to vary its zoom percentage is displayed; this can also be done by
pressing the Z (zoom) key.

You can try out other icons and tool bars. Once you have painted something, use the
Backspace key (placed above Enter) to go back in the creation of the picture (undo) and
then, Shift+Backspace to advance (redo).

The colour palette is the basis of any picture. However, as far as games are concerned, it
will only be possible to simultaneously display 256 different colours on screen. These are
the colours chosen with the colour palette at first. It is very important to know that all the
pictures that are going to be used at the same time in a game must have been created with
the same colour palette. The games can use several palettes, but only one can be active
at each moment. Therefore, only the graphics using the active palette will correctly be seen
at that moment.

It is also possible to adapt a graphic created with a colour palette to another one. For each
pixel of the original graphic, the system will look for the most similar colour in the new
palette, replacing it. Nevertheless, as similar colours aren’t occasionally found, the pictures
normally lose quality when they are adapted to another palette.

There is always just one active palette in the DIV environment. All the maps of the desktop
must use this palette. For that reason, when the aim is to open a map (or a maps file) that
uses a different palette, the system will ask you first whether the new palette must be
activated.

3.2 Colour palettes

Tool Bar

Important : If there is unsaved information in the loaded maps, answer Cancel (not
activating the new palette, as this task could damage the loaded maps), close the map
(or filed) recently loaded, save all the maps loaded in their respective archives, close
them and then, reopen the new map.

Page 68

If you answer Accept and the new palette is
activated, the system will ask you whether you wish to
adapt the maps previously loaded to the new palette.
If you do not want to do so, then close the loaded
maps, without saving them previously (as they would
be incorrectly saved, with a colour palette different
from theirs). In short:

� In order to adapt the open map to the active palette in the environment , answer
Cancel to the question activate the new palette. If you are not satisfied with the
performed adaptation, close the new map without saving it.

� In order to adapt the loaded maps to the palette of the open map , answer Accept to
the question activate the new palette and Accept to the question adapt the loaded
maps. If you are not satisfied with the performed adaptation, close the previous maps
without saving them.

� In order not to adapt any map to another palette , first save and close the loaded
maps in the desktop and then, open the new one, answering Accept to the question
activate the new palette.

Once you start a project, you must decide which colour palette you are going to use for it. If
it makes no difference, then by default use the palette of DIV Games Studio (div.pal).
Otherwise, you must use the palettes editor (palettes \ edit palette...). Once you have
created a new palette, it is advisable to save it in a disk’s archive, as it can be recovered
from this archive if the palette is later modified or accidentally changed.

DIV Games Studio contains a library with many graphics ready to create new games.
However, keep in mind that many of these graphics use different palettes. Therefore, you
will have to adapt some of them to the palette of others, in order to put them together in a
game. The best option is, once your own palette has been defined, to adapt the graphics of
the library (the graphics that you wish to use in the game) to this palette.

The option palettes \ merge palettes... allows you to create one palette from two, including
the most characteristic colours of both palettes in the resultant one. This is a very good
option to use graphics with several palettes, to create a mixed palette and then to adapt all
the graphics to it. It is also possible to create a palette from more than two, merging them in
pairs until only one is left.

The palettes menu that allows us to access these and other options has been described in
section 2.3 of this book.

From now on, many references will be made to the transparent colour . This is the first
colour of the palette. The colours in the palette are always shown in order, in 16 lines, from
the uppermost line with colours ranging from 0 (left) to 15 (right), to the lowest line with the
colours ranging from 240 to 255. Thus, the transparent colour is the upper left one in the
palette.

This colour is normally black and it is the colour that all the pixels of a map have when they
are created. This tonality can be modified (in the palettes editor), but at first, it is not
advisable to do so.

3.3 Trans parent colour

Dialog Box

Page 69

The name transparent stems from the fact that the graphics’ pixels painted in (or left in) this
colour won’t appear on painting the graphics in the game . That is to say, the zones of
the graphics that are not opaque are painted in this colour. Without a transparent colour, all
the graphics should be squared, such as the maps containing them.

Other utilities also name this colour background colour or mask colour .

In the graphic editor, it is possible to recognise the transparent colour because, on
pressing the B key , this colour changes from black to an intermediate gray. This task is
performed on many occasions to clearly observe the graphics’ outlines (to be able to
recognise their transparent zones). To change the transparent colour to black, it is
necessary to press the B key again.

Therefore, it is advisable to have two black colours in the palette. On the one hand, colour
0 that will be the transparent one. On the other hand, a black colour (that can be placed at
any position in the palette) to paint the zones of the graphics that must really be black and
not transparent. To paint in this black, the transparent colour must previously be highlighted
by pressing the B key as, otherwise, nothing will be seen. This opaque black is colour
number 240 of the palette by default of DIV (that of the lower right corner).

A little experiment can be carried out to verify the effect of the transparent colour, which is
as follows:

� Create a new map and paint something in it (some colour doodles).
� Exit the editor and creates a copy of this map (drag the map window to the wallpaper).
� And finally, drag the copy that has been created (the new map window) to the original

map.

The editor will be entered to copy the graphic on itself. On moving it with the mouse, it will
be possible to observe how the zones that were left in transparent colour do not appear
now. It is possible to force the painting program to paint the zones of transparent colour in
its original black, by selecting the icon depicting a little man in the tool bar.

The transparent colour won’t ever be painted in the games. Therefore, when the aim is to
show black parts of a graphic, they must be painted in opaque black .

Almost all the tool bars have a series of common commands, which are now described. At
the same time, this section also explains how the paint program generally works.

Control is basically performed through the mouse, but in the painting zone, when precision
in movements is required, the pointer can also be moved with the cursors or the following
keys:

Q, A Move pointer up / down.
O, P Move pointer left / right.

The spacebar can also be replaced by the left mouse button, when the pointer is controlled
through the keyboard. That is to say, in most bars, this key will allow us to paint in the
selected colour.

3.4 Basic controls

Page 70

Control through keyboard is performed pixel by pixel. To move faster, it is necessary to
press the Shift key simultaneously. If the Num. Lock key of the keypad is activated, the
cursors will move the pointer 8 by 8 pixels. To move it one by one pixel, this key must be
disabled.

In most bars, it is possible to take a colour from the picture if the Shift key is held
pressed while the spacebar is pressed or the left mouse button is clicked on a pixel of the
edited map.

Besides the mouse, the W / S keys may be used to choose a lighter or darker colour of the
selected range. Moreover, if the Shift key is held pressed, then the range appearing in the
bar (instead of the colour) will be chosen. These tasks can also be performed if Control is
held pressed while the cursors are used, selecting the colour of the range with the left or
right arrow keys and the range, with the up or down arrow keys.

To select the transparent colour momentaneously, it is possible to press the 0 (zero) key.
If later this key is pressed again, the previous colour will be restored. It can also be done by
clicking on the black rectangle placed just before the colours range of the bar (to its left).

To undo actions, we have already mentioned the Backspace key, which is used together
with Shift to redo the undone actions. The undo icon appears as an arrow to the left, next
to the magnifier icon (the edit zoom).

The use of the Z key to vary the zoom percentage was also mentioned (it is necessary to
point the zone to be expanded with the mouse when this key is pressed). When the
maps are edited expanded, they won’t fit on screen on many occasions. To move through
the complete map, it is simply necessary to move the mouse towards the edge of the
screen .

The screen’s shift can be blocked by clicking on the coordinates of the tool bar. They will
change their light gray colour for a dark gray , blocking the shift of the expanded zone. To
unblock the shift, it is necessary to click on the coordinates again.

The dialog boxes displayed from the tool bars can be exited in many ways:

� By closing the box (with its upper left button).
� By pressing the ESC key.
� By pressing the left mouse button.
� By selecting the icon that activated it again.
� By clicking on the edited map.

A summary with all the available keys in the graphic editor can be found in Appendix C of
this book .

Page 71

As it has been already mentioned, the first icon of all the tool bars is that indicating the
painting mode. Each bar corresponds with a painting mode and therefore, has its own initial
icon. The bars are individually described in chapter 4. To access these bars, together with
clicking on the first icon, the function keys can also be used. The list of keys, as well as a
summary of the tool bars’ function is now shown.

F2: Pen, for hand drawing sketches and outlines.
F3: Straight lines , to create diagrams and geometric figures.
F4: Multiline , variation of the previous bar for stringed lines.
F5: Bézier curves , to trace outlines and curved lines.
F6: Multicurve , variation of the previous bar for stringed curves.
F7: Rectangles , to create squared or rectangular boxes or frames.
F8: Circles , to create circumferences, circles or ellipses.
F9: Spray , tool for retouching and artistic finish.
F10: Filling , to fill several types of surfaces.
F11: Blocks edit , tool to manage graphic blocks.
F12: Undo , specific bar to do and undo actions.
Shift+F1 : Text , to write texts inside the edited maps.
Shift+F2 : Bar to position Control points inside the maps.
Shift+F3 : Dotting bar, to edit little graphics accurately.

The Colour sampler is another of the icons shared by many bars, which normally appears
after the colours range and which, on clicking on it, momentaneously leads to another little
bar used to select a map colour.

The coordinates, the magnifier and the colour
on which the mouse pointer is placed in the
map are shown in the sampler bar. This colour
will be taken to paint on clicking on the map,
automatically returning to the previous bar.

Keep in mind that, to choose a map colour, it is also possible to click on it by holding the
Shift key pressed at the same time.

A great number of bars show the percentage icon after the colour sampler. The amount of
ink added to the picture on painting is controlled through this icon.

A dialog box with a ruler will appear on clicking on this
icon. It is necessary to click on this ruler to establish
the percentage. A percentage equal to 100% (the value
of most bars, by default) will imply to paint it in
completely solid colours. That is to say, they won’t mix
up with the previous picture.

Very good results may be obtained if you learn how to use this technique properly, as it
allows us to retouch a part of a graphic (for instance, with the pen bar) by adding a small
quantity of one colour. It is also useful to paint with a low percentage of black colour to get
parts of the picture gradually darker, or with white colour to get them lighter.

3.5 Generic icons

Painting Tools

Colour Sampler Bar

Percentage Selection

Page 72

The icons that can appear following these two icons in the different tool bars are normally
mode icons , which offer several ways to use this tool. Generally, on using them a new
dialog is displayed with new icons, each of them showing a different way to use this tool.

When a second pair of coordinates appears in the right part of a bar, they will normally
indicate the width and height of the object that is being painted with the tool. Thus, it is
possible to perform precise measurements.

To access the dialog box labeled Creation and selection of colours range described now,
it is necessary to press the C key or to click with the left mouse button on the selected
mouse in the bar (it is the rectangle located just after the undo icon and before the rectangle
of the transparent colour). A colours
range is simply a sequence of
colours of the palette used to paint in
different shades of a colour (a
sequence of greys, reds, etc.).

A rather big box will appear with
many colours. To return to the
picture, it is necessary either to press
the C key or to click on the selected
colour again. This box is split into
three big zones: the colour palette
(upper left part), the range editor
(lower part) and the list of colour
ranges (upper right part).

The colour palette
This section is simply used to select colours of the palette, by clicking on it. Information
about the selected colour or about the colour on which the mouse is placed, if it is inside the
palette, appears to the right.

Information deals with the colour number in decimal, in hexadecimal, a colour sample and
the percentages of red, green and blue comprising the colour.

From this box it is not possible to modify the palette , as this task can only be performed
from the palettes menu, outside the graphic editor.

The range editor
Up to 16 different colour ranges may be defined for a palette. The selected range appears in
the tool bar and can be edit with this tool.

An exact copy of the range located in the tool bar appears to the left and three rectangular
buttons that change their value when pressed appear to the right, having the following
functions:

3.6 Colour ran ges

Colour Range Selection

Note : The ranges editor does not modify the colours of the palette, but it only
arranges them again , in order to create with them colours’ sequences useful to paint.

Page 73

� The first one (upper left) defines the number of colours comprised by the range, that can
be changed between 8, 16 or 32 colours.

� The second one (upper right) defines whether the range is editable or fixed , that is to
say, whether the range is going to be modified or is going to remain in its current state.
When the range is editable , one or several small icons with a gray up arrow appear in
it. These icons are used to establish the range colours.

� The last button (lower) defines the mode in which the aim is to define the range. The
available modes are as follows:

� Straight from the palette. In this mode, the first colour of the range is defined, while
the other colours are sequentially taken from the palette.

� Edit every colour. In this mode, each of the range’s colours can individually be
defined, by selecting them from the palette and assigning them later at each
position of the range.

� Edit every two colours. This mode is similar to the previous one, with the proviso
that it will only be possible to define one colour out of every two. The intermediate
colours will be defined by the system with the colour of the palette closest to the
average of its two adjacent colours.

� Edit every four or eight colours. These last two modes are practically identical to
the previous one, with the proviso that they even define less colours. They are used
by the system to search for the intermediate ranges between every two colours,
automatically defined.

Once a range has been defined, it is advisable to fix it to prevent it from accidentally being
lost. When the palette is saved in an archive, the information about the colour ranges used
in it is also saved in this archive.

The list of colour ranges
The 16 colour ranges that can be defined appear in the upper right part of the dialog box.
This list is very useful, as it allows us to directly select the colour range in which the user is
interested at each moment in order to paint.

It can be noticed that a small white arrow indicates which is the selected colours range. It
also appears in the ranges editor and the tool bar.

Three values are shown following each range, defining its characteristics: number of
colours , mode of definition , and whether it is Editable or Fixed .

The use of colour masks is an advanced technique. It is used to protect parts of the picture
that must not be modified, a task that can be performed by selecting a set of the palette
colours, over which it won’t be possible to paint.

For instance, if the black colour is defined as a mask in a map with most of its background
painted in black and with a picture at the center, then the black colour will be protected, so
that it is not possible to paint on it. Therefore, it is possible to paint the graphic keeping
inside its outline, as the paint tools won’t paint outside the graphic.

3.7 Use of colour masks

Page 74

Invert . It is used to invert the state of selection of all the palette’s colours. If, for instance,
the aim is to paint only in one colour, it will be easier to select this colour and then, to
reverse the selection by pressing this button rather than selecting the rest individually.

Clear . It is used to take the defined masks out. In other words, to unselect all the colours
in this dialog.

It is necessary to press the M key or to click with the right mouse button on the selected
colour of the ruler, in order to access the dialog of masks definition (the same as to activate
the dialog of colour ranges, but with the other mouse button).

A dialog containing all the palette’s colours will be
displayed, with two buttons appearing in the lower
part. The colours aimed to be masked can be
selected and unselected by clicking on the palette
with the left mouse button. A little square
appearing at the center of a colour will mean that it
is not possible to paint on this colour in the map. If
all the colours are selected, it won’t be possible to
paint with any tool in the map.

It is also possible to select (mask) colours by
clicking on the edited map (while the masks
dialog is open).

The two buttons located in the lower part of this
dialog fulfill the following functions:

A practical example
� Creates a new map (maps \ new...), enter the editor (by double-clicking on the map),

select the Spray tool (which is accessed by pressing F9) and paint something, using
several colours at the center of the map.

� Access the masks dialog by pressing M and select the transparent colour (the first
colour of the palette, in the upper left corner) to hide it.

� Exit the editor by pressing ESC and create a copy of the map, dragging it to the
wallpaper.

� Drag the copy recently created to the window containing the original map, in order to
copy the graphic on itself.

If you follow these steps, you will notice how, on moving the graphic, it is not displayed
against the black background, as this colour has been masked to prevent it from being
modified. Don’t forget to take the mask out in order to continue to paint normally.

Masks Dialog

Note : It is commonplace, after having masked some colours, to forget it and, later, to
notice how the paint program is not properly working. That is explained because the
masks must first be taken out (which can be done by pressing the M key and then,
clicking on the button Clear in the dialog).

Page 75

��������(

&��������������

(

Page 76

This chapter describes the specific functions of every painting tool bar and some of the
techniques that can be used to make some tasks easier or to obtain better results with this
graphic editor.

It is advisable to read this chapter with the computer before you, in order to practice the
techniques described in it at the same time.

These are the two basic painting tools to initiate the pictures or to define the small details.

The dotting bar is used to put and remove pixels in a map. To remove pixels
means to put them in transparent colour again. This mode is normally used to
create very little details of graphics accurately.

It is normally used by controlling the pointer with the keyboard (using one of the
two sets of keys: cursors or QA,OP). The keyboard is also used to select colours

(with control and the cursors , or with W,S if the second set of keys is used) and to put and
remove pixels (space bar). The Shift+Space bar is also normally used to take a colour of
the picture itself.

This way to paint pixel by pixel allows us to create graphics with great. Precisely for that
reason, the dotting bar, instead of the pen bar, is used, as the first one facilitates to remove
a pixel by clicking again on the same position, when the pixel has been put incorrectly or
mistakenly.

The pen bar is less complicated and is normally used with the mouse. It is the
basic painting tool par excellence, and it is used to initiate most of the pictures or
sketches. Better results will be obtained if you work with a very high zoom
percentage, as it will be easier to perceive the details in this way.

It is not possible to vary the stroke thickness, which always equals one pixel.
Thicker strokes of other tools are only useful to paint doodles instead of pictures, creating
the negative habit of painting quickly and bad.

The Percentage icon, which allows us to define the ink quantity, appears in this
bar. Good results will easily be obtained with a high zoom percentage, one pixel
stroke and a low ink percentage. The percentage initially equals 100%, while the
picture is defined, using lower percentages for the final finish.

There is another utility available through the pen bar: to smooth . This is obtained by holding
the D key pressed while the picture is painted with the pen. In this mode the user won’t

4.1 Dottin g and pen bars

�� !���(������&�������������'

Dotting
Icon

Pen Icon

Percentage
Icon

Page 77

paint in the selected colour (no matter which one it is), but the map colours will gradually
be modified to mitigate the sudden colour changes and to prevent some pixels from
excessively standing out.

Don’t try to start a picture with low ink percentages, smooths, sprays, etc. These artistic
finishes must be left for the end. At the beginning, the picture’s outlines and sections must
be defined with solid and clean strokes, starting with the colouring, bright, etc. once they
have been retouched.

To retouch outlines until they look good, it is normally necessary to make several attempts,
clearing the inaccurate strokes (by painting with the background colour or using the undo
command), to correct them on time.

These two bars allow us to draw straight lines and they are used to define the most
geometric parts of the initial sketches or very detailed finishes.

The colour must first be selected, double-clicking later on both ends of the line.
When the first end has been defined, the line will be seen in the way it will be
drawn when the second end is defined. To cancel the task at that moment, press
the right mouse button . To cancel the line once the two ends have been
defined, use the undo icon (or the Backspace key).

To the right of these bars, two numeric values appear: the width of the drawn line (higher)
and its height (lower). These values only appear when the first end of the line has been
defined, to help us to measure. The cursors are normally used to position the line ends for
the precise adjustments.

These bars contain all the conventional icons, among them that of percentage which, in this
case, is only used to perform specific touches.

The multiline bar is practically identical to the previous one, with the proviso that
the former allows us to draw several interwoven lines. Once the last end has
been defined, the right mouse button must be pressed to finish the multiline.

Finally, it is also possible to use smooth with the D key. Smooth can be used for many effects;
for instance, to paint anti-aliasing lines, as shown in the following practical exercise:

� Create a new map. Enter the editor, choose the lines tool (F3) and selects the white
colour.

� Draw a line from the (10,10) coordinates to the (68,47) coordinates; use the cursors to
adjust the coordinates. You will see how the line has an aliasing appearance (the pixels
are seen a lot).

� Now draw a second line from the (10,9) coordinates to the (68,46) coordinates (one pixel
upper). But, on defining the second end, hold the D key pressed.

� Perform the same task one pixel lower than the original line. You will see how, on
creating two smoothed lines above and below the original one, you have succeeded in
hiding its aliasing appearance .

4.2 Bars for lines and multilines

Lines
Icon

Multilines
Icon

Page 78

The curves bars allow us to accurately do curved strokes in the initial sketches, without
requiring a steady hand (unlike drawing with a pen).

The use of the curves bar is similar to that of the lines bar, with the proviso that
the former creates bézier curves instead of straight lines. The initial and final
ends of the curve must first be created (the same as it happens regarding straight
lines). Then, two other points must be defined. The first one, indicating the
steepness of the curve in the initial end (to which the curve goes up) but the
farther this point goes from the initial end, the sharper will the steepness with

which the curve emerges from this end be. The second one will specify the final end’s
steepness in a similar way. The curve will be defined after the left mouse button has been
pressed four times.

The multicurves bar works in a way slightly different way. It is very useful when
it comes to defining curved outlines of a graphic. A complex curve is defined by
sections, with splines .

The first section will always be defined as a straight line , establishing its initial
and final ends. Then, different points will be defined along the trajectory of the
outline. They will be linked by the computer, automatically creating a continuous
curve.

It is very important to use the + and - keys of the keypad to vary the strength with which
the curve emerges from each point of the trajectory. That is to say, the destination point and
the initial steepness of the section must be established for each new section. If the intensity
is reduced to the minimum, this tool will practically work in a way similar to the multilines bar.

These two curves bars also allow us to adjust the ink percentage and use the smooth , as it
happens regarding the previous bars.

These bars allow us to paint the most basic geometric figures. They can be used as colour
filters, among many other applications.

The rectangles bar is used in a way similar to the lines bar, selecting the colour
first and defining the two corners of the rectangle by double-clicking the left
mouse button on the map. The width and height in pixels of the rectangle that is
being defined appear to the right of the bar.

A new icon, placed to the left of the rectangle’s size, allows us to select two modes
with which this bar paints rectangles or solid boxes (by default, boxes will be
painted).

To paint squares (or squared boxes), it is necessary to hold the Control key
pressed while the second end is defined. Thus, the width and height will be forced
to be equal.

4.3 Bars for curves and multicurves

4.4 Bars of rectan gles and circles

Curves
Icon

Multi
curves
Icon

Rectangles
Icon

Mode
Selector (Rectangles)

Page 79

This bar also allows us to establish the ink percentage . When solid boxes are painted with
an ink percentage less than 100% against a background picture, the effect of applying a
colour filter on that picture will be obtained. On defining the box, it is possible to vary the
ink percentage (by clicking on the percentage icon) until the desired effect is reached.

The circles bar works in a way similar to the rectangles bar, as it also allows us
to paint circles (filled) or circumferences (not filled), apply filters with the
percentage, etc. The circles are defined with two radii (horizontal and vertical,
respectively), creating kinds of ellipses that are but flattened circles. To create
perfect circles, with similar radii, it is necessary to hold the key Control pressed,
as it happens regarding the rectangles.

Besides choosing between circles or circumferences, the mode selector icon
allows us to define them in two ways:

� From corner to corner, defining the upper left corner and the lower right corner
of the box that embraces the circle.

� From center to the radius, defining the circle’s central point and then, its radius
length (or its radii length, if Control is not pressed).

The mode selector icons of both bars appear in a little dialog that is displayed from
the tool bar, and their pictures are self-explanatory.

This tool bar allows us to use the computer version of a paint spray (an aerosol or diffuser) to
carry out artistic and irregular finishes. Its use is almost as easy as that of a real spray. It is
necessary to select the colour and click on the map at the same time that the pointer is moved.

It is essential to use the percentage icon of this bar to adjust the paint quantity
expelled from the spray. By default, the opacity percentage is adjusted at 25%.
To obtain precise finishes, it is better to use very low percentages (even less than
25%). Thus, it is possible to retouch the picture little by little.

A new icon appears in the right end of this bar. This icon is used to adjust the
spray’s stroke thickness , which is now necessary. By clicking on this icon, a new
dialog will be displayed, showing the available thickness; select one by clicking on
it.

As usual, better results will be obtained with a high zoom percentage (x4 or x8)
with a small spray and with a low ink percentage. It is also important to learn how
to use the colour masks (described in section 3.7) together with the spray in order
to keep inside the zones on which the aim is to apply the effect.

The spray has several interesting applications, related to retouching rather than to
painting. For instance, by using the spray on a graphic while the D key is held
pressed, it is possible to smooth the graphic irregularly.

4.5 Spray bar

Circles
Icon

Mode Selector (Circles)

Spray Icon

Thickness
Selection

Page 80

Another example: it is possible to apply irregular bright with the spray on graphics already
painted, by selecting the white or black colour (depending on whether the user wishes light
or shade) and adjusting the ink percentage to the minimum.

This is one of the most useful bars of the graphic editor if you learn how to use it properly;
thus, it requires practice. Its appearance is similar to that of the previous bars, but its
application is quite different.

The filling bar is used to fill the parts of the pictures with colours. It works in four
ways, that must be distinguished. They are activated by clicking on the icon
placed to the right of the bar and selecting the filling mode with one of the icons
that are displayed.

Conventional filling
The first mode (corresponding with the icon selected by default) is shared by most of the

graphic tools. One colour is selected and a part of the picture is clicked. With the
selected colour, the program will paint all the pixels of the picture whose colour is
the same as that of the pixel that has been clicked on and which are attached or
joined to it.

This tool is used to colour sketches. When the filling is going to be used, care must be taken
to keep all the sections to be filled closed since, if there is any hole or fissure in its outline,
the filling will leave to the external part of the section.

Diagonal filling
This mode is similar to the previous one, but with an important difference. In the
conventional filling, when the pixels attached to the original one (to the pixel in
which the filling starts) are selected, only the pixels from which it is possible to
reach the original pixel are taken into account, without passing through a pixel
of a different colour, and with individual movements in straight line (passing
from one pixel to the next one by one of the four sides).

This filling mode considers attached pixels those of the same colour united by a diagonal ,
as well as those united by one side .

4.6 Fillin g bar

Filling Icon

Conventional
Filling Icon

Example : A test can be carried out in a new map, painting an irregular, closed outline
with the pen tool, selecting a filling colour and clicking within the outline of this filling
mode. If the outline is closed, its inside will become filled with the selected colour. The
same operation can also be done regarding the external part of the map.

Diagonal
Filling Icon

Example : In a new map, paint a square in any colour with the rectangles tool (only the
edge, not filled with colour). In the same colour, paint a circumference (not filled) inside
the square. Now select another colour with this filling mode and click on the
circumference’s inner part. You will see how the filling has left it by the corners of the
circumference (by the diagonals) but not of the square (as it can not be left by any side
or diagonal of any pixel).

Page 81

The usefulness of this filling mode lies on the possibility of changing the colour of pixel line
graphics, as they deal with pixels attached by sides as well as by diagonals, and the
conventional filling could not go through them.

Filling to a limit
The third filling mode is the most powerful one, but not the most useful one.
Instead of filling a colour with another one (like the two previous modes), it fills
with one colour all the colours it finds, until it reaches an edge of the same
colour.

If several graphics are painted against a black background map, this filling mode is selected
(with the black colour of the selected background) and one of the graphics is clicked on,
being deleted. It happens because the program has been filling with the black colour until it
has found an edge of the same colour (the graphic’s exterior).

Filling with a gradient
It is the filling mode most esteemed by the graphic artist and, at the same time,
one of the most difficult to find in other painting programs. It requires technical
skill, and terrific results may be obtained with it.

In this mode, a section is filled with a colour with a colours’ gradient of the
selected range in the tool bar (explanation about how to define and select
these ranges was included in section 3.6). Lighter or darker colours of the
range will be used, depending on the lightness of the colours delimiting
the filled section .

Example : In a new map, paint any doodle with the pen tool (in a single colour). Now
select another colour and, with this filling mode, click on a pixel of the doodle; you will
see how it is filled. You can carry out the same test with the conventional filling mode,
noticing how, in this case, only one of the segments shaping the doodle is filled (as the
conventional filling doesn’t leave by the diagonals).

Filling To A
Limit Icon

Example : In a map with several pictures, select a colour not used by them (purple, light
green, etc.) and, on them, paint a closed outline with the pen, leaving a part of the
pictures inside the outline and another part outside. Finally, with the same colour select
this filling mode and click on within the outline. The inner outline will be filled, no matter
the pictures contained in it.

Filling With
A Gradient
Icon

Example : In a new map, select a uniform colours’ range (for instance, any of those
defined in the DIV’s palette by default). Now paint a circumference (and not a filled
circle) with one of the darker colours of the range, about 50 by 50 pixels (not very big)
and, within it, paint a small circle (filled) with the lightest colour of the range. Finally,
select this filling mode (with the range of colours in the tool bar) and click on between
the circle and the circumference.

Page 82

A new tool bar will appear with two icons: a single arrow and a double arrow. You must
click on one of these two icons in order to start the gradient. The single arrow advances a
step and the double one , several. When you are satisfied with the result, press the right
mouse button to go back to the filling bar.

It is advisable to carry out several tests, filling in different ways, to observe the results that
can be obtained. Take into account that the gradient allows us to have light and dark colours
in the outline of the filled zone. What is really achieved with this mode is to fill a section with
the average of the colours defining its outline, taking the average of its lightness.

The bigger the zone to be filled is, the longer the effect will take . Therefore, you must
try to divide the big zones into small ones, if possible.

Not always are better results obtained the longer the gradient is being applied. Indeed, on
many occasions when it is excessively applied, the outlines of the section stand out too
much. Thus, the result looks worse.

There are not many fixed rules to obtain good results with gradients. To a large extent, good
results depend on uniformity , number of colours of the range (it is better to use 32 colour
ranges, if possible) and the section to be filled. Practicing with this tool is indispensable to
master it.

This is the main and most important bar of the graphic editor. It is mainly used to select
zones of the picture and allows us to access other tool bars to perform different tasks with
these zones.

It is the graphic tool to cut and paste. But it can be used for other tasks such as
to rotate, scale, lighten, darken, soften, invert, etc.

The first action to perform will always be to select the zone with which the aim
is to work. In the right part of the bar, an icon depicting a dotted square ,
indicates the mode in which this selection is going to be performed. By clicking
on this icon, a dialog with six icons will appear in the right part of the bar. These

six icons indicate the possible modes to select a zone of a graphic.

Learning to select parts of the maps in these six modes will be very
helpful to gain skill to work with the graphic editor. Therefore, the
way to select zones in each one of these modes will be now
described. The tasks that can be performed with these zones once
selected will be explained later. You can try out all these modes on
a map with some pictures. Once the zone has been selected with a
mode, press the ESC key to try out to select with another mode.

4.7 Blocks edit bar

Note : The bar of blocks edit described next can also be used to carry out other very
effective types of colour filling.

Block
Edit Icon

Block Selection

Page 83

Box selection
This is the easiest way to select a zone of the edited map. It deals with tagging
a simple box (or rectangle) of the map. To do so, it is necessary to click on two
of its ends with the left mouse button.

Once the initial box has been defined, it can be adjusted by clicking near its
corners to place it in a new position, or by clicking near the central point of one
of its four sides to increase or reduce the box by this side.

Filling selection
This selection is very versatile. It allows us to select a zone of a map by
selecting a set of colours from one or several points. It is necessary either to
click several times on the zone to be selected, or to move the mouse pointer
through it with the left mouse button pressed, until the entire zone is selected.

In order to understand its performance well, practice is required. Once the zone
of the map has been selected, it is possible to add more colours or zones. This
selection is not always appropriate but, on many occasions, it allows us to
select complex zones quickly. It is very similar to the magic wand of other
painting programs, as they name it.

If, for instance, a yellow pixel is clicked on, all the yellow pixels united to the original one will
be selected. Later, if a red pixel is clicked on, all the yellow or red pixels united to the
original ones (both the original red and yellow) will be selected. And so on.

Polygonal selection
The polygonal selection is very common in the painting programs. It deals with
selecting the zone by drawing its outline. It can be done in two ways: defining
several points (clicking with the left mouse button) around the zone that the
computer will unite with straight lines, or freehand drawing its outline (moving
the pointer with the left button pressed).

The selection won’t be completed until the outline is entirely closed . This can
also be done in two ways: reaching the initial point of the outline again, or
pressing the right mouse button (or the ESC key) for the computer to unite the
initial and final ends of the outline.

Once the polygonal selection has been closed, it can not be modified. Therefore, if it has
been incorrectly defined, it will be necessary to press the right button (or the ESC key)
again to untag the zone and thus be able to define the selection again.

Several boxes selection
This is another quick mode to select parts of a map. First, a simple box is
defined, like in the first mode. But, once it has been defined, instead of
adjusting it, more boxes may be defined. The union of all the tagged boxes will
comprise the selected zone.

It is used to quickly tag pictures that can not be tagged with a simple box
because a part of another picture that is not intended to be selected would be
included in it. For instance, a "L"-shaped graphic could easily be selected with
two boxes.

Block
Selection
Icon

Filling
Selection
Icon

Polygonal
Selection
Icon

Multibox
Selection
Icon

Page 84

Automatic box selection
This mode of selection and the following one are the quickest modes. They can
only be used to select a picture inside a map with several separate pictures. It is
essential that the map’s main background has a transparent colour . That is to
say, that the pixels external to the pictures are of the first palette’s colour
(number 0).

If any pixel of a picture of the map is clicked on, the minimum box containing
it (a rectangular zone containing this graphic) will be instantaneously selected.

The pictures must be separate enough one from other so that it is possible to define a box
which doesn’t invade the adjacent graphics.

If, once the selection has been defined, the same picture is clicked on again, the box will
increase one pixel by its four sides. That is to say, it will include the picture with one pixel
added margin. If it is clicked on once again, it will either recover its origins size, or increase
even more if it has found another part of the graphic near the original one.

On the contrary, if another picture of the map different from the one initially selected is
clicked on, the original one will be unselected and the new graphic will be selected.

Automatic filling selection
This selection is similar to the previous one, but using filling techniques, instead
of boxes. It is as if, in the previously mentioned filling selection, all the colours
except the transparent one were preselected. That is to say, on clicking on a
picture’s pixel all the pixels united to the original whose colour is not the
transparent one, will be included .

This is a really powerful selection tool. It can make the work with the graphic
editor easier. Moreover, once the initial selection has been defined, other

selections may be added to it. That is to say, as many pictures of the original map as
necessary can be selected.

Controls common to all the selection modes
� All these selections, once defined, may be shifted through the screen if the Control key

is held pressed, clicking at the same time with the left mouse button on a position of
the edited map.

� To cancel any selection (untag it), it is simply necessary to press the right mouse
button or the ESC key. Then, the edit bar will be returned to its original state, being
possible to define the selection again from the beginning, change the selection mode,
or exit this tool bar.

� As long as a zone is selected, it is always possible to consult its width and height in the

right end of the edit bar.

� As long as the selection is being defined, it may be useful to vary the zoom percentage

by using the Z key, and thus observing better which are the pixels that are being
included in it.

Once the selection has been defined
Three new icons will appear in the bar when a zone of the map is selected. These are the
move , effects and cut and paste to window icons, from right to left respectively.

Automatic
Box
Selection

Automatic
Filling
Selection

Page 85

The cut and paste to window icon is the easiest one of the three. On clicking
on it, a new map window will be created in the desktop and the selected
zone will be pasted in it. Inside the graphic editor, it will be only possible to
notice how the selection will be untagged but, on exiting it, the new map
window will appear in the environment.

This icon is really useful, as it provides great flexibility in the operations with graphic blocks,
for instance:

� Copy sections from some maps to others . Taking the selection out to a new map and
then, dragging it to the map in which it is intended to be copied.

� Edit graphics in bigger maps . For instance, creating a 20 by 20 pixel picture in a map
of similar seize is not very comfortable. It is easier to create this picture in a 200 by 200
pixel map that allows us to have several copies, textures and samples of it, in order to
take it to the 20 by 20 pixel map, when the picture is finished.

� Take a graphic or texture of a map out . The maps are normally used to create many
pictures, not only one. Finally, in order to include these graphics in the game, they will be
selected, cut and paste to individual maps and stored in a file FPG which can be loaded
in the game.

If the move or effects icons are clicked on, two new tool bars will be accessed, to move and
copy the selected zone or to apply graphic effects, respectively. These two new bars are
now described.

Move the selected zone
Once a zone of a map has been selected, by clicking on the move icon
(depicting a hand on a little man), the bar to cut, copy and paste graphic blocks
will be accessed.

In it, the selection will be moved through the map with the mouse pointer (a hand). To copy
the block to a new position, it is necessary to press the left mouse button . To hide the
graphic of the mouse pointer (to see the appearance of the block in a position, without the
hand above it) it is possible to press the H key.

The usual commands, such as the right mouse button , or the ESC key may be used to
return from this bar.

In this bar there are many new icons. The
zoom and undo icons are displayed after the
coordinates, like in most of the bars,
appearing the following ones to its right:

Opacity / Semiopaque . On clicking on this icon, there will toggle between two ways to copy
the graphic: opaque (by default) or semiopaque. The only limit when it comes to copying the
semiopaque graphic (with an effect of transparency), is that not always are the colours
necessary to create the effect found in the palette, thus using the closest ones.

Transparent colour . This icon must be clicked to prevent the first colour of the palette from
being shown as transparent . That is to say, when the aim is to move the selection like a

Icon To Cut

Icon To
Move Note : This is also the bar that appears when a map is dragged to another

one in the environment’s desktop.

Bar To Move

Page 86

compact rectangular block, with no hollows. It is used to prevent the copied block from being
mixed up with what there is in the map’s background.

Horizontal flip . The third icon will horizontally flip (mirror) the block. If it is clicked again, the
block will be restored to its original position.

Vertical flip . This icon is complementary to the previous one. On clicking on it, the graphic
will be vertically flipped.

Angular rotation . On clicking on this icon, a new bar used to rotate the block will appear. It
works easily. First, it is necessary to place the block in any position of the map and press
the left mouse button . Now, moving the mouse around the graphic, its new angle will be
defined. The left mouse button must be pressed again to establish the angle, while the
right mouse button must be pressed to cancel the rotation.

Block scaled . This is the icon to change the size of the block (increasing or reducing it). It
works practically equal to the rotation icon. A new bar also appears. First, it is necessary to
click on the map’s position. Then, moving the mouse, the zoom percentage is selected to
establish it finally, by pressing again with the left button in the map.

Delete original selection . The last icon will delete the original zone in the map. The colour
selected in the bar of blocks edit will be used to delete . Therefore, if the aim is to delete
with the transparent colour , it must first be selected (before entering the move bar). This
icon is used to move a block . To access this bar, it is first necessary to select the zone, and
then, the move icon. Then, the block is deleted from its original position with this icon and
finally, it is copied in the new position.

All these icons are compatible. That is to say, it is possible to use all the necessary effects
to obtain the desired result.

It can be noticed that the icon to delete the original selection can be used as a filling tool,
selecting the colour in the tool bar and the zone to be filled (with any of the selection mode)
so that, on clicking this icon, the selection is filled with the chosen colour.

Apply effects to the selection
Once a zone of a map has been selected, by clicking on the effects icon (with
the letter FX) the tool bar will be accessed to apply effects to the selected block.

The pixel line delimiting the selection will continue to be seen in this bar. To
return from this bar, it is also possible to use the right mouse button or the
ESC key.

New icons also appear in this bar from the undo
icon (which must be used when, with an effect,
the desired result is not obtained). These icons
are now described, from left to right:

Pass to the selected range . All the colours of the selected zone will be changed into the
colours of the range selected in the tool bar (edit bar). For that reason, the colours’ range
must be selected before entering the effects bar. The change is made depending on the
levels of brightness of the selected pixels and the range’s colours.
Reverse colours . Creates the negative of the selected zone, changing the light colours for
the dark ones, and viceversa.

Effects
Icon

Effects Bar

Page 87

Create an edge . First, it is necessary to select a graphic with, at least, a margin of one
pixel, and the colour with which the edge is intended to be created. Then, on selecting this
icon, an edge of that colour will be created through all the graphic’s outline.

Lighten . Lightens all the selected pixels. That is to say, it slightly increments its lightness.
The only limitation are the available palette’s colours.

Darken . This operation is opposite to the previous one. It subtracts lightness from all the
pixels of the selected zone. If the zone is excessively lightened or darkened, it is necessary
to use the undo icon, and not the opposite operation as, in this case, the colours of the
original picture would be more and more impoverished.

Soften . The icon located in the right end allows us to soften all the pixels of the selected
zone. It must be used for effects in very specific zones as, if was applied on complete
pictures, they would look blurred. To avoid the excessive aliasing of some graphic’s pixels, it
is better to use the tools to soften specific zones (tools such as the pen or spray, by holding
the D key pressed).

The undo bar, that is accessed through the icon depicting a double arrow or
through the F12 key inside the editor, is used to undo or repeat all the actions
performed in the graphic editor.

The undo task can be performed from practically all the bars, with the
Backspace key, and to repeat actions, it is necessary to hold the Shift key
pressed while the same key is pressed.

Therefore, it is not normally necessary to access this bar. However, it will be more
comfortable to do so when many actions must be undone as there are four buttons to undo
and repeat actions at two different speeds. The icons of this bar are self-explanatory: left
arrows are used to undo and right arrows are used to repeat (redo).

Once a picture has been created in a map, it is very
funny to use this bar to undo and repeat the work, as if
it was a video.

The undo memory establishes the limit of actions that can be recovered; it can be defined
in the configuration window (with the option system \ configuration...). By default, the limit
is 1088Kb, which will almost always be enough. However, if you are working with very big
maps, it can be advisable to increase this limit.

4.8 Undo bar

Undo
Icon

Undo Bar

Important: When you are working on several maps, it is vital to know that it will only be
possible to undo the actions dealing with the last map on which you have worked. For
instance, suppose that there are two maps and you enter the first one to paint a circle
and then, the second one to paint a square. You won’t be able to undo the circle, unless
you first undo the square. That is to say, the actions can only be undone in the inverted
order in which they have been done.

Page 88

The text bar is used to write texts in the maps with the fonts of the archives
FNT, or with those created with the Fonts generator (explained in the fonts
menu, section 2.5 of this book).

The appearance of this bar is practically identical to the rest of tools. Any
activated window of letters font must exist in the environment to write with a
font (a letter type) (see the fonts menu).

If there isn’t any window of this type , it will be possible to write with the letters font used
by the programs editor (they can be selected in system \ configuration... among several
font sizes for the editor). In order to write with the editor font, it is necessary first to select
the colour for the letters and, then, to click on any part of the map (with the left button) to
input the text. The ESC key or the right mouse button must be pressed, once the text has
been input.

If there is an activated font window , then it will be used to write. In this case, the
transparent colour must be selected to write a text. If another different colour is selected,
the font coloured in it will be shown. That is to say, the first colour of the palette must be
selected to use the natural colours of the font.

While the text is input, the cursor can be positioned by clicking on another different part of
the map.

When a text is being input, the previous character may be deleted with the Backspace key.
To go to the following line, press the Enter key.

The last accessible tool bar is not a painting bar. It is used to define control
points inside the maps to be used in the games, in order to locate some
positions of these maps.

There are different applications that can be given to these points inside the DIV
programs.

This control points bar allows us to place up to 1000 different pixels inside a graphic. Each
of them will be identified by a number (from 0 to 999).

To place one of these pixels, suffice will be to select
the pixel number with the left arrow and right arrow
icons and then, to click on the graphic.

To delete (unselect) a control point, it is necessary to click on it in the map once again.

4.9 Text bar

4.10 Control points bar

Text Icon

Note : This bar also has the ink percentage icon, which can be used to write translucent
texts, instead of opaque ones. Thus, attractive labeling effects can be obtained, on
writing on different textures.

Control
Points Icon

Control Points Bar

Page 89

The only control point used by the system is control point number 0 (the first one). This
point defines which is the virtual center of the graphic and it has many applications inside
the language.

When control point number 0 is not defined, the system will work as if the virtual center of
the graphic was its real center (a point placed half the width and height of the graphic).

The DIV graphic editor also allows us to create and edit animation sequences. The frames
sequence will be created in a series of maps all of them of a similar size in pixels . That is
to say, if the aim is to create an animation of 100 by 100 pixel size and 8 frames , the eight
100 by 100 pixel maps must first be created in the desktop.

The easiest way to create several maps of the same size is to create the first one (with the
option maps \ new...) and then, to drag it to the wallpaper several times.

Then, the maps windows must be arranged . This is done
by simply superimposing the windows on top each other.
The last one is placed in any part of the desktop and, on it,
the penultimate, and so on. It is not advisable to put each
window exactly on top the previous one. Rather, it must be
slightly displaced, for instance, a little to the right and
somewhat lower.

The animation can be edited once the windows have been put in order. For that, only the
upper window among those comprising the animation must be edited (that is to say, the
window that is over the rest) by double-clicking on it. And, once the graphic editor has been
entered, it will be possible to pass to the following frame by pressing the TAB key, and to
the previous one, with the Shift+TAB combination.

Practical example
Continuing with the same example, once the eight 100 by 100 pixel maps (all of them
empty, in black) have been created, they will be put in order, as it has been explained (it

4.11 Animations edit

Note : Once the control points have been defined, for them to have effect inside a
program, it will be necessary either to save the map (archive MAP) or to include it again
in the graphic file (archive FPG), by dragging it to this archive (depending on which
graphic is loaded in the program).

Superimposed Windows

Important : If there are more maps of the same size in
the desktop (continuing the previous example, another
map of 100 by 100 pixels that must not be a part of the
animation), their windows must be minimised for
the program to know that they must not be included in
the animation. Once the animation has been edited, it
will be possible to maximise these maps again.

Page 90

doesn’t matter the order they are put in, as all of them are empty; thus, anyone can be first,
second the last one, etc.).

Then, double-click to edit the upper map (the last one that has been placed). Now, select
any colour and the pen tool. Draw a big 1 in the map (don’t mind about the number’s
appearance). Now, press TAB and draw a 2 in the second frame. Press TAB again and
draw a 3, ... and so on, up to number 8.

The animation is already created. You can use the TAB key (pressing Shift or not) to
display the animation. If you hold this key pressed, you will see the whole series of the
animation. Use the Z key to vary the zoom percentage in which the animation is seen. You
can continue to edit any of your frames.

Some pieces of advice about animations
Normally, the best way to create an animated graphic is first to create a sketch of the
animation, drawing some lines representing the graphic. When this animation looks good,
edit the first frame and paint the definitive graphic in detail, on the sketch. Later, use the
same techniques and tools to complete the rest of frames.

When long animations (made up of many frames) are retouched, occasionally it is advisable
to focus on a specific part of the animation. For that, minimise the rest of frames

The best way to save the animations in the disk is through a file FPG . If you don’t have any
file yet, create a new one (files \ new...). Then, drag the first frame to the file window, input
a code and describe it. Next, do the same with the rest, in order (the program will suggest
you consecutive codes for the rest of frames). When you wish to work again on this
animation, tag all the frames in the file window and use the option files \ load tags .

If the animation is not made up of many frames, and they are not very long, you can use a
trick to arrange the animation’s frames without having to put the maps one on each other.
Thus, pass the mouse pointer over all the maps in inverted order (first over the last one,
then over the penultimate one, etc.) until you reach the first one. Then, enter the graphic
editor by double-clicking and the frames will be similarly arranged. The only problem is that
they will get out of order if you exit the graphic editor and move the mouse pointer over the
desktop in a disorderly manner.

This last section dedicated to the graphic editor deals with the description of some tricks
and techniques used by the graphic artists of Hammer Technologies to obtain better results
in the graphics of the games, obviously adapted to the possibilities of DIV Games Studio’s
graphic editor.

4.12 Tricks and advanced drawin g techni ques

Note: If you exit the graphic editor in a frame that is not the first one, for instance, in
the fourth one, you will see that the windows are put in another order , with the fourth
frame over the rest. Don’t worry, they are still in order. But now, when you want to re-
edit the animation, click on the uppermost frame , the fourth one, so that they don’t
get out of order.

Page 91

We recommend you to read this section only when you have a perfect knowledge about all
the possibilities of this editor.

Use of scaled
The first technique deals with painting graphics in double size and then, halve them. Thus,
they will gain quality and definition.

For instance, to create a 100 by 100 pixel picture, it is done first 200 by 200 pixels size and
then, it is re-scaled to its real size (with the option maps \ re-scale...).

For instance, try to paint a picture with white strokes, against a black background, split into
little closed sections. Then, colour these sections (with the normal filling tool, in different
colours), delete the white strokes (with the diagonal filling tool and the black colour) and
finally, halve the map.

Another curious technique. In the previous picture, instead of deleting the white strokes,
select them with the block edit tool (with the filling selection, by clicking on these strokes)
and apply the softening effect on them several times (with the effects bar)...

Use of masks to replace colours
Occasionally, the aim is to replace a map’s colour by another different one. This can be
done as shown below.

For instance, create a map with several doodles by pen in different colours. Now, to replace
one of the colours by another one, select the masks dialog (key M), choose the colour to be
changed (for that, you can click on the map) and click the button Invert (to protect against
writing all the colours, except the one you intend to change). Finally, select the rectangles
tool (filled boxes), choose the new colour and paint a rectangle occupying the entire map
(from corner to corner) ... and don’t forget to remove the mask to go on working!.

Use of the windows
Rather than a technique, this is a piece of advice. Always use the possibilities of the DIV
environment to back up the work. When you are going to "improve a graphic", it can be
advisable to select it and cut and paste it in a new map window. Thus, it will always be
possible to recover the original graphic "if the improvement doesn’t improve". When these
security copies don’t exist any longer, close the windows.

Use the keys to adjust blocks
When you are creating a mapped background for a game, that is to say, a décor from basic
blocks that are repeated several times, use the cursors to correctly adjust the blocks, as
they will always be more secure than the mouse as far as movements are concerned.
Remember that the Num. Lock key of the keypad must be disabled for the cursors to move
the block pixel by pixel.

Creating colours ranges
A proper definition of the colours in a game can make the work inside the graphic editor
easier.

When you need to carry out a transition from a colour to another one in a picture, access
the colours range editor (key C) and select one of the ranges that you are not using to
redefine it. Define a range of 16 or 32 colours, editable every 8 colours . Then, place one
of the colours in one of the ranges positions (by clicking on the little icons with a gray up
arrow) and the other one in the following position (eight colours farther to its right or left).
For you, the program will search for the best possible transition in the palette from one

Page 92

colour to the other one (the intermediate colours between both). It will be useful to find
transitions between different colours, such us from red to blue, from green to brown, etc.

Always carry out tests by selecting colours from the range and reassigning them to another
position of it (first clicking on a range colour and then, on one of the little gray icons), to
obtain different sequences of colours that can be useful for you.

Redefine the transparent colour to avoid aliasing
Aliasing implies that the pixels of a graphic’s outline stand out too much. If the game is
going to be developed against a background of a specific colour, or against some specific
shades of colour, it is possible to create graphics whose outlines are better hidden in the
background with the technique explained here.

For instance, create a new map of 80 by 80 pixels and paint a graphic (e.g., two separated
circles, the first one in white and the other in dark colour). Leave a free margin of one pixel,
at least, around the graphic (empty in black colour). Supposing now that this graphic must
appear against a blue background representing the sky in the game, follow the steps
described below:

� Enter the palettes editor (palettes \ edit palette...), select the transparent colour (the
black colour located in the upper left part) and modify it so that it becomes the colour of
the alleged game’s background (the blue you prefer, for instance, 25% of green and
50% of blue will create a sky blue). Now click on Accept and answer Cancel to the
question of whether you wish to adapt the maps.

� Edit the graphic, you will see the graphic against the blue background, with its outline

aliased. In the masks dialog (key M), hide the transparent colour (click on the first
palette’s colour, the blue one). Thus, you avoid to modify the exterior of the graphic.

� Now, to soften the aliasing, select the pen, expand the picture (with the magnifier, zoom

by 8) and carefully pass it along the graphic outline with the D key (smooth) pressed.
The colours of the graphic outline will approach the background colour. Continue to
apply the effect as long as necessary.

� Finally, remove the mask (once again clicking on the transparent colour in the masks

dialog), return to the palettes editor, redefine the transparent colour to black, click on
Accept and again, answer Cancel to the question so that the maps are not adapted.

The transparent colour can be defined when you want to see the outline of the graphics
against a specific colour. Keep in mind that you can always stress the transparent colour
with the B key inside the graphic editor.

Filling with textures
To fill a graphic with a texture, instead of with a solid colour, you can move the selections
with the Control key, for instance:

� In a map, put a texture on one side (if you have no texture, you can quickly create one
with the spray bar) and, on the other side, paint a circle of any colour (filled). The texture
must be greater that the circle.

� Now, to fill the circle with the texture, use the block edit bar and select the circle (with the

filling selection mode).

Page 93

� With the Control key pressed, move the circle selection to the texture, then click on the
move icon and shift the block again to the circle.

Pass graphics from a map to another one with TAB
The possibility given by animations to change the map, inside the graphic editor, by pressing
the TAB key, can be used for many other tasks.

If you have several maps of the same size , with different graphics in each one, you can
select a graphic in one of the maps, click the move icon in the edit bar and then, use the
TAB key to copy the graphic to another map.

It can also be used to obtain the filling with textures explained in the previous section,
having the texture in another map. Select the graphic to be filled in one of the maps, press
TAB to pass the selection to the map with the texture, cut in it the block (with the move
icon) and return to the map with the graphic by pressing the same key again.

Summary
After all we’ve mentioned plus the possibility of merging palettes, the generator of
explosions, the letters fonts and managing filling with gradient, the blocks operations, the re-
scaled, the ranges editor, ..., you can consider yourself a professional graphic artist,
providing that you are not daltonic, unfortunately.

Page 94

Page 95

��������)

�������*�!��*��$�

)

Page 96

This chapter describes many of the terms related to programs which are essential to
understand how to create programs. We recommend you to read it even if you are an expert
in programming or know a lot about it. Even if you are able to recognise the concepts that
are explained here, you should learn the terms which are used to name them in the DIV
language.

If you have never made a program, it could be hard to understand some of the terms that
are explained here, but you must not worry, you’ll be able to understand them later on once
you see them used in practice.

Basically a program is a series of written orders that the computer must execute one after
the other so that the expected results are achieved.

Programs are actually the group of orders, data, graphics and sounds, etc. which produce
the final result, but in DIV programs will be referred as the list of programs, that is, what we
must type in the edition windows in order to create the code which governs what the
videogame does.

A DIV program consists of three big parts: one to define the program data, another to define
the game main orders (orders are called statements in the program) and another to define
the orders of the different type of processes.

For processes we understand the different items inside a game, i.e. the graphics in motion
(also called sprites). For example, in a space-invaders game, the spacecraft driven by the
player is a process, each enemy is another process, each shot is another process and so is
each explosion, etc.

Appendix A illustrates the generic outline of a program in DIV language.

Data are the key to programming. They are a very easy concept but somehow difficult to
describe. If you already know the basis of programming then all you have to know is that in
the DIV language for data we understand the programs variables, tables and structures .
It is a generic concept which includes those three.

If you have never created a program, you should know that computers have a memory
where they can store values. Data are references to specific positions of the computer

5.1 Definition of a program

5.2 Definition of data

�� !���)���������*�!��*��$�'�+�������������

Page 97

memory containing a numeric value which is used in a program. These data are given a
name , let’s say for instance we call a datum “counter ”, and this name is used in the
program to refer to that numeric value.

A program can give a specific value to the datum called “counter ”. To give the datum the
numeric value 123, the program will use a statement (order) like the one below:

counter = 123;

Programs can also check the value of the data or use them in expressions; for instance, to
give a datum called “mydatum” the value of the “counter” plus 10 , we will used the
following kind of statement:

mydatum = counter + 10;

Before the computer executed this statement, mydatum could have any numeric value but
after the statement was executed, mydatum will have exactly the value that results from
adding 10 to the numeric value the datum “counter” has at that time.

Definition of data
Data can be classified as pre-defined or defined in the program .

Pre-defined data are names already reserved in the language to refer to certain numeric
values. For example, all processes (graphic items of the games) have two pre-defined data
called x and y, where its coordinates (the situation of the drawing of the process on the
screen). Therefore it is not possible to create more data called x or y, since these two
names refer to the pre-defined data in which the coordinates are stored.

The data defined in the program are the new data used by each program to make
calculations, etc. The part of the programs which declare new data are similar to the
following one:

GLOBAL
newdatum1 = 33;

This will mean this program is reserving a position in the computer memory to contain a
numeric value, which will initially be 33 and that the program will refer to such position with
the name “newdatum1”. Program data names are always names the programmer makes up.
We can define as many different data in a program as necessary.

Types of data
This kind of data, such as “counter ”, “mydatum ” or “newdatum1 ”, are called variables and
are the simplest data, that is a name associated to a numeric value which is stored in a
position of the computer memory.

But there are other types of data which are more complex: the tables and the structures .

A table is a list of variables , i.e. it is a name associated not with a single memory position
but with as many as it is necessary. To define a table in a program, we make a declaration
like this:

GLOBAL
mytable1[3] = 0, 11, 22, 33;

Page 98

In a program, the above lines will declare “mytable1 ” as a list of 4 variables. You must take
into account that we always start counting from the position 0, and that this table has up to
position 3, as the number between the symbols [] (called square brackets and which must
not be taken for brackets) indicates. Four positions of the memory will be reserved for
“mytable1 ”, and these positions will initially (before the program is started) be given the
values 0, 11, 22, and 33.

When one of these memory positions have to be checked or modified in a program, the
name of the table must be indicated and also a numeric value to specify which table position
is to be checked or modified must be given between the square brackets.

For example, a statement to put value 999 in position 1 of “mytable1 ” (which had 11 as
original value) would be as follows:

mytable[1] = 999;

Structures are the most complex data. They are like a file box (think of a filing cabinet
containing information about a person in each file) which has a number of notes (like the
name, address, telephone, identity number, of each person) in each file.

Structures are the filing cabinets and each of the files is called a record, and to each note
within a file is called a field . For example, in a game the following structures could be
defined to keep information about the position on the screen of three enemies:

GLOBAL
STRUCT position_enemies[2];

coordinate_x;
coordinate_y;

END = 10,50, 0,0, 90,80;

This file box would be called position_enemies , would include 3 files (with the numbers 0,
1 and 2, as the number 2 in square brackets shows), and each file would have two notes,
the horizontal and the vertical coordinate of the enemy.

Technically speaking, position_enemies is a structure with 3 records , each one with 2
fields , that is coordinate_x and coordinate_y .

The list of values which goes next will place the first enemy at the coordinates (10, 50), the
second one at (0, 0) and the third one at (90, 80).

For this structure position_enemies, 6 positions will be reserved in the computer memory
(3 records x 2 fields). Later on, when you wish to access one of these numeric values in the
program, you will have to indicate the name of the structure, the record number and the
field name. For instance, to introduce the value 66 in the memory position where the vertical
coordinate (y) of the second enemy is kept (that is the 1 record, because the first enemy
coordinates are in the 0 record), the following statement would be used:

position_enemies[1] . coordinate_y = 66;

In fact, it is very similar to tables except that after the record number you have to indicate
the symbol “.” (a dot) and the name of the field.

Page 99

Data scope
Data can still be classified according to another criteria: their scope. In this case, we find
three kinds of data: global , local and private .

The global data scope covers the entire program; this means that whenever we define a
global datum , this will be a memory position (or several positions if the datum is a table or
a structure instead of a variable). This memory position can be accessed from any point in
the program.

Any point in the program means any area of statements. There is one area of general
statements in the main program and then each type of process has its own area of
statements.

All areas of statements can be identified because they start with the word BEGIN and
finish with the word END.

Therefore, when we say a datum is global it means that this datum (the same memory
position) can be used in the main program as well as in any of the processes.

The local data are names which actually refer not to a single datum but to several.
Among this kind of data are the above mentioned x and y used to keep the coordinates of
the processes.

For example, there could not be a single memory position reserved to the datum x, since
each process of the program (each game item) will have a different horizontal coordinate, a
different value in its x variable. That’s the reason why there will be a memory position
reserved for the x variable of each process.

Thus when we use the name x in a program, we will access a different numeric value
depending of which process uses it. Each process will access its own x coordinate by the
local variable x .

Finally, the private data are those which are used exclusively in one process of the
program . For instance, if a game item requires a variable to count from 0 to 9 this counter
will be kept in private variable , since the rest of the processes do not need to use this
value.

That means that in a process we define a private datum called “mycounter ”, this name will
not mean anything within another process.

Summary
For example, when we speak of the pre-defined local variable angle we will be referring to
a datum which is identified with the name “angle” , and which has the following
characteristics:

The global data, on the other hand, always refer to a single value. For example, a
global datum of a game could be the player’s score. The name “score” will always
refer to this value, no matter which process uses it. This way any process would be able
to modify the player’s score and all the processes would access to the same memory
position using this name.

Page 100

� It is a variable , that is, a name which refers to a single numeric value , and not to a list
of them or to a records structure.

� It has a local scope, and therefore all processes will have their own angle variable ,
each one of them with its numeric value (these can be the same or different).

� It is a pre-defined datum, this means that it is not exclusive of a program: all DIV
programs have this datum a predefined.

In addition to this all we need to know now is that this is the datum in which the processes of
the games defined their angle to three decimal places.

In the DIV language, the data can have whole numeric values within the range (-
2147483648 ... +2147483647). These are the numeric values for which there is space in a
memory position of the computer.
DIV does not use numbers with decimals. It is not possible to specify 1,5, a value will pass
from 1 to 2 directly without intermediate values. It is also important to know that we must not
use commas to separate the thousands, for example, twenty three thousand and forty
should be written 23040 and not 23,040.

When we need to do a more accurate calculation using a less numeric than the units, then
we have the data used to count in tenths, hundredths or thousandths , and so on. This is
called fixed comma . For example, if we use the local variable x (x coordinate) of a process
in tenth parts, we will be able to specify the coordinate 1.5 units by defining the value of x
as 15 tenth parts, which equals to it.

Every time a program expects a numeric value at a specific point, a numeric expression
can also be specified.

Numeric Expressions
An expression is basically a mathematical formula which links one or more operands (x, 2,
-7, counter , ...) by several operators (*, AND, +, /, ...); examples of expressions would be:
2, 2+3 or (x*4)/-3 .

As values we can only use integers within the range specified above and the result of the
expression will also be truncated within that range.

The operands which can be used in a expression are, besides the numbers, all the data,
functions and items of the programs.

The operators which can be used in a expression are the following: (synonyms of the
operator are shown in brackets, if it has any)

� the basic arithmetical operators : () Brackets, + Addition, - Subtraction (or negation of
the sign), * Multiplication, / Division and MOD Module (%).

� the logical operators : NOT Binary and logical Negation (!), AND binary and logical (&,

&&), OR binary and logical (|, ||), XOR (Or exclusive) (^ , ^^).

� the comparison operators : == Comparison, <> Different (!=), > Bigger than, >= Bigger

than or equal to (=>), < Less, <= Less or equal to (=<).

5.3 Numeric Values and Ex pressions

Page 101

� the pointers operators : OFFSET Direction or slide (&), POINTER Operator of
addressing (*, ^ , []).

� the operators of increments : ++ Operator of increment, -- Operator of decrement.

� the binary operators : >> Rotation to the right, << Rotation to the left.

Constants are a type of names (like the ones given to the data) used as synonyms of
numeric values . For instance, we could use a constant called maximum_height as a
synonym of the numeric value 100 .

The difference between a constant and a datum is that no computer memory position is
reserved to keep the value of a constant since such value never changes
(maximum_height will always be 100, once it has been so defined). Thus DIV will replace
(when running a game) every constant with their respective value.

This means it would be the same to use maximum_height as to use 100 in the program.
Constants are used to see more clearly the list of a program. In the example given, the
constant will report that the number 100 used in the program is the maximum height (of
any object or item in any game).

There are also pre-defined and defined constants in the programs . An example of pre-
defined constant could be min_int, a synonym of the smallest numeric value a datum can
take in the language (-2147483648), or max_int, synonym of the largest numeric value
(+2147483647). A defined constant in a program would be the one used for the example
above maximum_height .

When are constants used
Let’s say that in a game several times we set 3 as the maximum number of lives the hero
has. When we wish to raise or reduce that number, we would have to search and replace
that number for the program and we run the risk of replacing another number 3 which could
be in the program for something else.

The alternative to this is to state a constant which we could call for example
maximum_lives as a synonym of the numeric value 3 and to use such constant in the
program instead of the number. Then, when we wish to change this value, all we’ll have to
do is replace that number in the constant statement maximum_lives .

Once a constant has been given a value, this value cannot be modified later in the program.

5.4 Definition of a constant

Note: the function of each of these operators can be learnt later on. You don’t need to
worry about it now.

Page 102

A name is a sequence of alphanumeric characters used to identify an item in the program,
such as the name of a process, of a constant or of a variable. These names can be created
with the following characters:

Rules to build new names in a program
� the sequence of characters must only contain characters included in the above list

(except for the capital letters corresponding to the small letters of the list). The compiler
doesn’t care for differences between capital and small letters (ABc or abC are the same
name for it).

� Inside each sequence we cannot leave blank spaces, i.e. for the compiler it is not valid as

a name enemy aircraft . It will take that as two names. In this case, the name can be
stated as enemy_aircraft , and we will use the underlining character (low dash) instead of
a space.

� A name cannot start with a numeric digit like, for example, 9a. However, after the first

character every necessary digit can be included in the name (a9 for instance would be a
valid name).

� The name cannot be the same as one of the pre-defined items of the language. To

check this out, you can go to the glossary of terms , or otherwise you can put the edit
cursor on a name of the program and press F1; if that name corresponds to an item pre-
defined in the language, the system will show a help page about it.

� The same name cannot be used for two different items. For instance, we cannot give a

constant the name thing and, then, state a process as PROCESS thing (x,y);.

Many names and symbols used in the programs have a purpose clearly defined in the
programming language. They are the pre-defined items.

All programs respect a generic structure called syntax. This structure is visible trough
several pre-defined items which appear in specific positions in the program.

Reserved Words
Reserved words are names which have been reserved as key words of the programming
language. For instance, PROGRAM is a reserved word which always defines the beginning
of a program.

5.5 Names

5.6 Items pre-defined in the lan guage

Symbols: _ # ª º $ P ƒ £ ¥ ¢
Digits: 0123456789
Letters: abcdefghijklmnopqrstuvwxyz
Letters (extended): ñ ç æ âäàåá êëèé îïìí ôöòó ûüùú ÿ

Page 103

Reserved words don’t have a difference between capital and small letters. Thus
PROGRAM, is as valid as program , or as Program , ...

Nevertheless, all examples in DIV Games Studio show the words in capital letters. The only
reason for this is to help you recognising them more easily.

Pre-defined Data
Pre-defined data are the variables, tables and structures which all the programs created
through DIV are going to have. These are basically used to control the different computer
devices and games graphics.

There are global data and local data (there are not pre-defined private data, these must be
defined in the programs themselves).

Global data are the information which every program needs. They are mainly used to
control devices such as the screen, the mouse, the joystick, the keyboard or the sound card.

Local data are the information about the processes of the games. The system needs to
know things such as which is the graphic of a process, what position it is on, its size, its
angle, its depth plane, etc. These data must be indicated in local pre-defined variables of
the processes. They all have a valid value default and therefore only those values we wish
to change will have to be set.

Pre-defined data of the DIV language are described in Appendix C of this book.

Symbols
Symbols are just characters or combinations of characters which also have a specific
meaning within a program.

In contrast with the reserved words, symbols are not names. They never used any of the
characters which can be part of the names (those described at 5.5).

Symbols are for example all the operators which can be used in the numeric expressions.

Symbols are always the same for all programs. There are not defined symbols in the
programs. The items which can be defined in the programs will always be identified by
names, either constants, data or processes.

In this chapter we talk a lot about numeric values, data and expressions of the programs.
But programming is really done through statements. Statements are the orders you give the
computer for each game. We have the following kind of statements:

� The assignments are statements used for calculations. A numeric expression is
evaluated and the result is assigned to the datum on the left of the equation.

� The conditional statements permit to verify if a condition is fulfilled (for example if a

process is at some specific coordinates, if the energy equals zero, etc.) and, in this case,
to execute another group of statements.

5.7 Statements

Page 104

� The loop statements allow to repeat a group of statements for a certain number of times
or until a condition is met.

� The calls to a function are the statements which really allow to execute “visible” actions

within a game, such as to put a graphic on the screen, to read the keyboard, to make a
sound, to change the video mode, etc.

� The calls to a process are very much alike the calls to a function, only that they call one

of the PROCESS blocks of the program itself. Call to processes are generally made to
add a new process to the game (an item such as a bonus, an explosion, an enemy, etc.)

� The control statements are a number of generic statements, such as FRAME, which

allow to visualise next frame in the game, or RETURN, which allows to finish a process,
or CLONE, which gives you the possibility of creating a copy of a process.

Generally in a process there are a loop statement and a FRAME statement. The loop is
used by the process to execute a number of orders in all the game frames and the FRAME,
which appears like one of the statements inside the loop, is used to visualise the process
graphic in the following frame (next frame). For example:

LOOP
x = x+1;
FRAME;

END

The LOOP ... END loop is the simplest; it indicates that the statements inside it must be
repeated indefinitely, once and again. The statement x = x+1; is an assignment used to put
in the local variable x (horizontal coordinate of the process) the result of the expression
x+1, i.e. it adds one to this local variable and therefore moves the graphic of the process
one point to the right. And the finally, the statement FRAME, will indicate the point in which
the process graphic has to be visualised in a frame of the game.

Conditions are expressions usually like the following ones:

x<320
size==100 AND graphic>10
y==0 OR (x>=100 AND x<=200)
...

They are used within some statements to check the program data. For that purpose the
comparison operators are used. These are the following:

5.8 Conditions

== Comparison of equality.
<> Comparison of difference (also valid!=).
> Comparison of bigger than.
>= Comparison of bigger than or equal to (also=>).
< Comparison of less.
<= Comparison of less or equal to (also=<).

Page 105

Brackets and logical operators can also be used to link several check-outs within a
condition. The logical operators are:

Next, some conditions formulated with these symbols and operators are shown, together
with a description in regular language.

A comment is a clarifying note about the program. Comments are not necessary for the
program to work correctly. There are two kinds of comments:

� Of a single line: they start with the symbol // and finish at the end of the line in which they
are defined.

� Of several lines: they start with the symbol /* and finish with the symbol */.

Next is an example program with several comments.

5.9 Comments

OR it compares that at least one of the two expressions is true.
AND it compares that two expressions are true.
XOR it compares that only one of two expressions is true.
NOT it compares that the following condition is not met.

x>0
this condition verifies that x is a bigger than number than 0.

x>=0 AND x<=9
it verifies that x is a number between 0 and 9.

y==x OR y==2*x
it verifies that y is equal to x or to 2*x.

x<>y AND NOT y==0
it verifies that y is different from x and that y is not 0.

(x<0 OR x>9) AND y==z
it verifies that and equals z and also that x is not between 0 and 9.

PROGRAM my_game; // Comment of a single line.
/*
This is an example of a comment of several lines, in which we can have as many
clarifying notes about the programs as we like.
*/
BEGIN
 FRAME;
END // the main program ends.

Page 106

All the texts included in a comment are ignored by the compiler. It is possible to put as many
comments as necessary in a program and at any point of the program. The comments
starting with /* and finishing with */ (called comments of several lines) can also start and
finish in the same line.

Functions are a number of names reserved in the language and used as statements to do
many actions in the programs.

The functions which are available in the language are described thoroughly in Appendix B.
Here is a summary of the available functions classified according to their task and a brief
description of each one of them.

All functions are used by simply specifying in a point of the program its name and, in
brackets, the values they require to specify the exact function they perform.

Functions of interaction between processes

Mathematical functions

Graphic functions

5.10 Functions

collision() - It detects the collision between two processes.
get_angle() - It gets the angle towards another process.
get_dist() - It gets the distance to another process.
get_distx() - It gets the horizontal distance of an angle and a distance.
get_disty() - It gets the vertical distance of an angle and a distance.
get_id() - It gets identifying codes of a type of processes.
let_me_alone() - It eliminates the rest of the processes.
signal() - It sends a signal to another process (for example, to eliminate a process).

abs() - It gets the absolute value.
advance() - It advances the process coordinates in their angle.
fget_angle() - It gets the angle between two points.
fget_dist() - It gets the distance between two points.
near_angle() - It gets an angle near another in a given increment.
pow() - It raises a number to a power.
rand() - It gets a number within a range randomly.
rand_seed() - It initiates a series of random numbers.
sqrt() - It gets the square root.

clear_screen() - It clears the screen
get_pixel() - It gets the colour of a pixel on the screen.
map_block_copy() - It copies a block of a map in another.
map_get_pixel() - It gets the colour of a pixel in a map.

Page 107

Music and sound functions

Entering functions

Functions to use the palette

Functions for scroll and mode-7

map_put() - It puts a graphic in a map.
map_put_pixel() - It puts a pixel in a map.
map_xput() - It puts a graphic in a map, with effects.
put() - It puts a graphic in the screen background.
put_pixel() - It puts a pixel in the screen background.
put_screen() - It puts a map as screen background.
xput() - It puts a graphic in the screen background, with effects.

change_sound() - It changes the sound parameters.
is_playing_cd() - It reports if the CD is playing.
load_pcm() - It loads a new sound effect.
play_cd() - It initiates playing of a CD-Audio.
set_volume() - It sets the volume of the mixer.
sound() - It emits a sound effect through the card.
stop_cd() - It stops the CD-Audio playing.
stop_sound() - It stops a sound effect.
reset_sound() - It resets the system of sound.
unload pcm() - It unloads a sound effect.

get_joy_button() - It gets the state of the buttons of the joystick.
get_joy_position() - It gets the position of the axes of the joystick.
key() - It gets the state of a key.

convert_palette() - It converts the palette of a graphic.
fade() - It starts a fading effect on the screen.
fade_off() - It fades off the screen.
fade_on() - It fades on the screen.
load_pal() - It activates a new colour palette.
roll_ palette () -It makes a colour roll with the palette.

move_scroll() - It updates the coordinates of a scroll.
refresh_scroll() - It updates the background of a scroll.
start_mode7() - It activates a mode-7 window.
start_scroll() - It activates a scroll window.
stop_mode7() - It stops a mode-7 window.
sto p_scroll () - It stops a scroll window.

Page 108

Functions to print texts

Functions for animations

Screen regions functions

Information about graphics functions

Initialising functions

Data recording functions

delete_text() - It deletes a text from the screen.
load_fnt() - It loads a font for letters.
move_text() - It moves a text to another position.
write() - It writes down a text on the screen.
unload_fnt() - It unloads a font for letters.
write_int() - It writes down a numeric value on the screen.

end_fli() - It ends up an animation.
frame_fli() - It shows next frame of an animation.
reset_fli() - It resets an animation.
start_fli() - It starts an animation FLI/FLC.

define_region() - It defines a region or window on the screen.
out_region() - It reports if a process is outside a region.

get_point() - It gets the position of a control point in a map.
get_real_point() - It gets the real position of the control point.
graphicic_info() - It gets information about a map.

set_fps() - It defines the number of frames per second in the game.
set_mode() - It defines the video mode.
load_fpg() - It loads a FPG file with graphics.
load_map() - It loads a map.
unload_fpg() - It unloads graphics from a FPG file.
unload_ma p() - It unloads a map.

load() - It keeps the value of a series of data in a file.
save() - It saves the value of a series of data.

Page 109

System functions

You can obtain help in the environment itself about any of these functions just by typing its
name in a window of a program and then pressing F1.

This chapter has already dealt with processes. There is a difference between the blocks
PROCESS of the programs, which define the performance of a specific type of
processes, and the processes of the game while running, which are objects of the game
whose performance is governed by one of the blocks PROCESS of the program, depending
on its type.

The blocks which define data and statements for a type of processes must start with the
reserved word PROCESS followed by its name (the name by which the processes of that
type are going to be identified) and its call parameter in brackets.

Parameters are a list of data in which the process is going to receive different values. The
brackets are mandatory even if the process does not have parameters.

After this heading, there can optionally be a PRIVATE section where the data which are
going to be used exclusively in the process are declared.

And, finally, the code for the process has to be specified. This code is a sequence of
statements between the reserved words BEGIN and END.

5.11 Processes

exit() - It exits from the game.
system() - It executes an external command of the system.

Note : You will learn the use of all these functions as you go on creating programs. All of
the functions are not at all used in every game; each game uses only those it needs
depending on the technique and on the effects it is going to offer.

PROCESS <name of the process > (<list of parameters >)

PRIVATE // Declaration of private data, if there are any.
<declaration of datum >;
...

BEGIN // Start of the statements of the processes
 <statement> ;
 ...
END // End of the process

Page 110

A process generally corresponds to a type of item in the game, such as a spaceship, an
explosion, a shot, etc. and within the process code usually a loop is implemented. Within
this loop, all the values needed to visualise such item (graphic, coordinates, etc.) and, then,
by the statement FRAME the order to visualise the object with the set features will be given.

Page 111

��������,

!�������
��-�$�
�

,

Page 112

Let’s get to the point. There are still many important concepts to be explained but this
chapter deals with how to create a game step by step.

This chapter gives you a little break after all those boring concepts and computer terms.

The first game is going to be a very simple version of a space invaders game. This example
will help to explain the general methodology to work with DIV Games Studio.

The first thing you need to create a game is an idea and then to create the graphics for it.
We are not going to give you the graphics because we’d like you to do all of this by yourself,
so we will just give you the necessary guidelines for you to create those graphics.

� Load the palette default of DIV Games Studio (palettes \ open... indicating div.pal). This
palette will be used by the game. Then select palettes \ show palette... to see it.

� Create a new map of 40 x 40 points, to design the main spacecraft (maps \ new...).

Enter the editor by double clicking on the map and create the drawing of the spacecraft
as a filled triangle pointing up and centered in the map.

All game graphs are to be introduced in a file FPG which will be loaded later in the game.

� Create a new file called test1.fpg (with option files \ new...) and drag the spacecraft
graphic to this file, indicating 1 as graphic code. Create the file in the directory default
(the directory called \FPG within DIV).

� Now do the same to introduce in the file a star background . Create a map of 320 x 200

points, select the colour white, the spray tool (the smallest size) and move quickly the
drawing pointer all around the map until you get a dotting more or less consistent. Then
introduce this graphic in the file with the code 2.

� Finally, create a graphic (any graphic) for the shot of the spacecraft , approximately of 4

x 12 points (with the graphic code 3) and an enemy of the same size as the main
spacecraft; all you need is to draw a filled circle (with the code 4).

Once the four maps are in the file, you can start programming the game. You can close all
the maps to free space in the desk, since all of them are kept in the file (maps \ close all...).

6.1 The graphic work

�� !���,�� �!�������
��-�$�
�

Note: do the required graphs for the game (we’ll tell you which) quickly. Don’t worry if
they don’t turn up too great: it’s only a test.

Page 113

Create a new program (programs \ new... indicating as name of the file test1.prg), an
empty window edition will appear. To start with, type the following list (you can use capital or
small letters)

This is already a correct program in the DIV language, although it doesn’t do anything. From
now on, the main statements of the program must be defined between the reserved words
BEGIN and END so that the computer will receive the different commands.

The first thing is to instruct the computer to load the file where the graphics have been
introduced; this will be done with the following statement (write it down after BEGIN):

This statement calls the function of the language load_fpg() which loads the file with the
graphics for the game. Now, create a PROCESS block to control the main spacecraft, right
after END of the main program.

Then you have to state in the main program that you wish to create a process of the type
spacecraft, and you call the process (right after the loading of the fpg file) with the following
statement:

To display the spacecraft within the program, some of its local variables must be defined in
order to define the position of the graphic for the spacecraft. The code of the graphic of the
process must be indicated in the graphic variable, and its screen coordinates must be
indicated in the x and y variables.

Then you have to use the statement FRAME to display the frames and some kind of loop to
do this several times. Otherwise if the process visualises only one frame, the program will
finish too soon. For instance, let’s use the loop LOOP ... END, so that the statement
FRAME is always repeated.

Taking into account that the graphic of the spacecraft is number 1 , if it is placed right in the
center of the screen (in the coordinates (160, 100), since the screen default will be 320 x
200 points), the spacecraft process would be as follows:

6.2 The first tests

PROGRAM test1;
BEGIN
END

 load_fpg(“test1.fpg”);

PROCESS spacecraft ()
BEGIN
END

 spacecraft();

Page 114

Given that several statements can be put in the same line and that the spaces to separate
names and symbols are not necessary, the three space variables could be defined in a
single line such as the following one:

You can debug the program step by step now to see how the computer executes all the
statements of that program; to do that press F12 and, once you are in the program
debugger (described at 2.10), press the button Debug several times. To end press ESC (to
exit the debugger) and ALT+X to exit the game.

You have already created a program which creates a process and shows its graphic on the
screen.

To move the spacecraft, all the keys of the cursors will be used. The function key() can be
used to check if a key is pressed. We will also need a conditional statement to specify that
the spacecraft must only move when certain keys are pressed. Include these instructions
right before the instruction FRAME of the spacecraft.

This statement indicates that when the “right” curser key is pressed, 1 must be added to the
horizontal coordinate of the spacecraft.

The statement x=x+1; will add 1 to the local variable x. This can also be done with the
statement x+=1; which is an abbreviation of the one above. The conditional statement IF()
... END will execute the statements inside it when the condition between brackets is fulfilled.

Then, the statement above could have also been specified in a single line such as:

6.3 Movin g the s pacecraft

PROCESS spacecraft ()
BEGIN

graph = 1;
x = 160;
and = 100;
LOOP

FRAME;
END

END

graph=1; x=160; y=100;

IF (key(_right))
x = x+1;

END

IF (key(_right)) x+=1; END;

Page 115

You can try to execute the example with the key F10. Press right cursor to move the
spacecraft point by point in that direction and then ALT+X to return to the desk.

You can complete the motion of the aircraft adding these three statements:

If you run the program now you will see that you are able to move the spacecraft around the
screen, even using the diagonals.

To move the spacecraft faster, you can replace the 1 of the lines above by another number,
for example, let’s replace them by 4. And to move the spacecraft with the joystick (if you
have one), you can replace key(_right) with joy.right , key(_left) with joy.left , etc.

Now you can create the processes for the spacecraft shots. Write the following block after
the block which controls the spacecraft.

You can see an important difference with the spacecraft process. Now, the variables x and
y are specified between brackets. These are called parameters and what they mean is that
when we call the process shot two values must be specified in brackets and the process will
take these values in its variables x and y . Therefore, the process cannot be called shot(); ,
its coordinates will have to be indicated and it will have to be called for example
shot(160,200); .

The code of this process defines its graphic (code number 3) and then it enters a loop
LOOP ... END (an indefinite loop) subtracting 16 to its coordinate y (thus moving the
process 16 points upwards) and shows an frame.

If you execute the program now you won’t see the difference with the previous program;
although there is a new PROCESS block, no process of this type appears in the game. The
reason is that the process has not been called in any point of the program.

The shot must be called by the process of the spacecraft, for example when it detects that
the Control key has been pressed. To do that the following statement must be used (right
after the statements which detected the moves of the spacecraft):

6.4 Creatin g more processes

IF (key(_left)) x-=1; END
IF (key(_down)) y+=1; END
IF (key(_up)) y-=1; END

PROCESS shot(x, y)
BEGIN

graph = 3;
LOOP

y -= 16;
FRAME;

END
END

 IF (key(_control)) shot(x,y); END

Page 116

This way the spacecraft will create a shot when it detects that the Control key is pressed
and will pass as parameters the same coordinates (x,y) as for the spacecraft so the shot
process receives in its coordinates (x,y) the same numeric values saved in the spacecraft
variables.

If the move was programmed with the joystick instead of the keys, you have to indicate
joy.button1 and not key(_control) , to make shots.

You can try it pressing F10 again. You will come to a small problem: the shots come from
the middle of the spacecraft and that doesn’t look right. To solve this problem you have to
use a coordinate y for the shots (the second parameter) a less value (since the positive
coordinates go downward and the negative go upward).

Try to replace the previous call by shot (x,y-20); (inside the statement IF ... END, of course)
and the problem will be solved. The shot is 20 points higher.

When you execute the game and you shoot for a while you will find another problem: the
game goes more and more slowly. This is due to the fact that there are more and more
processes of the type shot active in the game and when there are 500, 1000 or more
processes moving at the same time (even if you don’t see them on the screen, since they
are higher), the system takes longer to process them all.

You can stop the game with F12, calling the debugger, to check in the upper right corner the
number of processes the program has at each time.

In order to solve this, you must modify the processes of the type shot so that they are
eliminated when they appear on the screen. You can do it in several ways, for instance,
replacing the loop LOOP ... END with the following:

The statement REPEAT ... UNTIL() is also a loop statement which repeats the intsructions
within it several times, however it won’t do it indefinitely but when the condition indicated in
the brackets of UNTIL is complied with; i.e. until the coordinate y of the process is less than
0 (until the process gets out of the screen).

Now you can shoot as much as you like since when the shots get out of the screen they will
also get out of the loop; therefore when they reach the END of their BEGIN they will stop
running. Use the debugger again to verify it.

We already have a spacecraft which shoots; now we are going to try something more
difficult: to add enemies processes. We are going to create a process which, unlike the
shots, goes down until it disappears trough the bottom of the screen. Insert the next block
after the shots.

6.5 Addin g enemies

REPEAT
y -= 16;
FRAME;

UNTIL (y<0);

Page 117

This process receives three parameters: the horizontal coordinate (the vertical one will be
set by the process itself with the statement y=-20; , twenty points over the screen) and then
two values inc_x and inc_y which are two names of invented data (they are two new
names, we could have used any other).

These two data will be exclusive of the processes of the enemy type. In this case they will
be used to define the horizontal and vertical increment of the process per frame, i.e. the
number of points which will change its coordinates x and y .

It will also set its graphic, which was number 4; then the process will stay in a loop, and
each frame will add these increments to its coordinates until the coordinate y is a number
bigger than 220. Thus the enemy will have for sure exited the bottom of the screen and its
execution will be finished.

We’ll make the general program create the enemies processes; to do that, after the call to
the spacecraft process, the following statements have to be included:

A loop has also been created for the main program, so that each frame creates a new
enemy. The FRAME statement is mandatory, because even if the main program hasn’t got
any graphic to display in this case, it must anyway pass the images so that the program is
not stopped.

The function rand(minimum value, maximum value) receives a number randomly which
ranges between the two provided.

This way the enemy(x, inc_x, inc_y process will get a horizontal coordinate at random
between 0 and 320 (any position from the left to the right of the screen), a horizontal
increment between -4 and 4 (the enemy will be able to move from 4 points to the left to 4
points to the right, in each frame of the game) and a vertical increment between 6 and 12
(thus the enemy will go down the screen between 6 and 12 points per frame).

You can press F10 to try it. And yes,..., it’s true, perhaps there are too many enemies. Then
we can reduce the frequency of enemies appearing. Instead of making the main program
create one enemy per frame, we will specify a certain frequency of appearance.

PROCESS enemy (x, inc_x, inc_y)
BEGIN

graph = 4;
y = -20;
REPEAT

x += inc_x;
y += inc_y;
FRAME;

UNTIL (y>220);
END

LOOP
enemy(rand(0,320),rand(-4,4),rand(6,12));
FRAME;

END

Page 118

This can be done several ways. For example, we are going to use a conditional statement to
verify if the random number between 0 and 100 is less than 30. To do that, the call to the
enemy process of the main program have to be inserted in an IF() ... END, as shown below:

Now, the call to the enemy process will not be made every time, but only in 30% of the
frames, as a general average. The reason for this is that on obtaining the numbers
randomly, several of them between 0 and 30 could come out consecutively, and then many
number bigger than 30, etc.

To include the star background you drew before, you’ll use the function put_screen() ,
indicating after the load of the file FPG in the main program the following line:

This function requires two parameters. The first one is the number of the file where the
graphic we wish to use as background is located; the first file loaded in the program is the
file 0, the second one is 1, and so on. Logically since only one file has been loaded in the
program, this one will be the file number 0. The second parameter is the number of the
graphic (graphic code) within the file and the star background was inserted with number 2 in
the file.

Now we will use a little trick to avoid seeing the enemies so much alike: we will change their
size. We will define their local variable size , which indicates their size in percentage (by
default is 100, which is the original size) as a random number between 25 and 100, this way
some enemies will be bigger than others.

This can also be done in different ways; for instance, a new call parameter can be added in
the enemy processes indicating that instead of three values, they must have four and that
the fourth one will be in their size variable. The head of the process which controls the
enemies will then be as follows:

But now the call has to be modified too so that the fourth value is sent to this processes as a
random number between 25 and 100. The rand() function will be used again and the call to
the enemy process of the main program will be as follows:

6.6 Retouchin g the program

IF (rand(0,100) < 30)
enemy(rand(0,320),rand(-4,4),rand(6,12));

END

 put_screen(0,2);

 PROCESS enemy(x, inc_x, inc_y, size)

 enemy(rand(0,320),rand(-4,4),rand(6,12),rand(25,100));

Page 119

The calls to very long processes or functions (those with many parameters), like this last
one, can be split in several lines so that the program does not go too wide. This can be
done by dividing the line practically at any position, for instance:

Instead of modifying the call parameters of the enemy process, the following line could have
been included after BEGIN of the enemy block:

And, as a last retouching for now, we’ll make the spacecraft always appear in the lower part
of the screen. To do that the statements which used to allow the vertical move of the
spacecraft have to be eliminated (in the y coordinate); these statements were:

Once these two lines have been deleted (or commented by a // symbol at their start), the
spacecraft have to be placed in the lower part. To do that, the statement y=100; of the
spacecraft block (which used to place the y coordinate of the spacecraft in the middle of the
screen) will have to be replaced with the statement y=180; (which places the spacecraft in
the lower part of the screen).

This example is looking more and more like a real game. We are sure you must be willing to
know how to kill the enemies, because it’s unconvincing that the shots do nothing to them.

We will not only make the “laser ” shots from the spacecraft to eliminate the enemies, we will
also program an explosion to make its destruction more real.

To detect the collision between two processes we use the function collision() , which
requires as parameters the indication of the type of processes to verify if there is a
collision. Add the following line in the enemy process loop (anywhere in the statement
REPEAT ... UNTIL()):

The TYPE operator obtains the type of process and indicates afterwards its name. The
collision() function will indicate if the process of the enemy is colliding with any shot, if that
were the case, the statement BREAK will be executed.

This statement is used to exit from a loop , i.e., when the instruction BREAK is executed,
the enemy processes will exit from their REPEAT ... UNTIL() loop, and they will reach the
END of their BEGIN and end their execution. You can see how the statement BREAK
makes the loop to exit , and it is not necessary to comply with the y>220) for that.

6.7 Destro ying processes

enemy(rand(0,320),rand(-4,4),
rand(6,12),rand(25,100));

 size = rand(25,100);

IF (key(_down)) y+=4; END
IF (key(_up)) y-=4; END

 IF (collision(TYPE shot)) BREAK; END

Page 120

To exit the loop when the collision with the shots is detected, we could have also modified
the exit condition of the loop in the sense that the loop would be repeated until the
coordinate y were bigger than 220 or until the collision were detected; to do this the
following condition will have to be modified in the UNTIL of the enemies:

In this case the above conditional statement (IF ... END) wouldn’t be necessary.

In order to program the explosion we have to create it first. To do that, you must access the
explosion generator (maps \ explosion generator). Set the size 40 x 40 points (that is the
enemy’s size), 6 frames (the value by default) and select as the three colours, top down,
dark red, bright red and yellow.

After pressing Accept, 6 new windows will appear on the desk. You have to drag them in
order onto the file test1.fpg of the game (following the sequence of the explosion) and
indicate as codes of the graphics numbers from 5 to 10.

To display in the game, another loop is going to be done in the enemies processes, after
REPEAT ... UNTIL(). Thus when they exit from it, the explosion is displayed instead of
ending the program. To do this, the graphic have to pass all values from 5 to 10, giving a
frame with each one of them. In this case another loop statement will be used: FROM. This
is one of the easiest and most versatile statements. In this case, add the following
statement (after UNTIL):

And we already have the game explosion. The FROM uses a variable as a counter, from an
initial value to a final one, and executes the instructions inside (those between FROM and
END) for all these values of the variable. The explosions will have the same size as the
enemies, they’ll be small if the enemies are small or big if they are big because the variable
size hasn’t been modified and, although the graphic changes, each explosion continues to
be the same process which controls the enemy, with the same data.

What are you waiting for? press F10 again to verify the effect of the explosions.

Basically the sample mini game is finished; now it’s up to you to go on advancing and
improvising your own modifications.

But before ending this practical chapter, we are going to suggest some interesting
modifications.

For example, to improve the control of the protagonist spacecraft you can do it with the
mouse. To do that the two IF ... END which controlled the keys of the cursors by the
statement x=mouse.x; (which assigns the spacecraft the coordinate x of the mouse pointer)
will have to be replaced. And to shoot with the mouse, replace the condition of the following

6.8 Last minute chan ges

 UNTIL (y>220 OR collision(TYPE shot));

FROM graph = 5 TO 10 ;
FRAME;

END

Page 121

PROGRAM test1;
BEGIN
 load_fpg("test1.fpg");
 put_screen(0,2);
 aircraft();

 LOOP
 IF (rand(0,100)<30)
 enemy(rand(0,320),rand(-4,4),rand(6,12));
 END
 FRAME;
 END
END

PROCESS aircraft ()
BEGIN
 graph=1;
 x=160;
 y=180;

 LOOP
 x=mouse.x;
 IF (mouse.left)
 shot(x,y-20);
 END
 FRAME;
 END
END

IF (the so-called key(_control) function) with the condition mouse.left (which indicates
that the left button of the mouse is pressed).

You can put a mouse pointer in the program by assigning its code of graphic to the variable
mouse.graph (for example, mouse.graph=2 ; will be a fun effect).

In case you got lost at any point in this chapter, below is the list of the program as it will be
after all modifications in the version controlled by the mouse.

6.9 List of the program

Note: You can look at the next list to check how the program looks with all these
changes.

Important: you must not worry if a game goes too fast or too slowly, because the
speed can be changed with function set_fps() (set frames per second). This function
requires two parameters between brackets; the first one is the number of frames per
second the game must give and the second the number of displays which can be
omitted when the game is not run in a fast enough computer. For example, try to put
the statement: set_fps(100,10); at the beginning of the program (after BEGIN of the
main program)

Page 122

If you have been able to follow this chapter till now, we are sure you will be excited to show
a copy of the program to a friend. To create this copy in a floppy you need a formatted disc
(3’1/2 inches) and to follow the steps described at 2.1 / Creating installation...

We recommend ...
You can press F1 on any name of the system variable, reserved word of the language or
program statement to obtain more information. We recommend to examine the examples
of the language functions , which are very small programs (easier to understand than the
sample games) where you can find a great number of tricks and interesting techniques.

You can go back to point 5.10 of this book to see the list of functions and thus to be able to
determine those you are interested in. There are many interesting things: adding scores
(text functions), sliding the screen background (scroll function), adding sound effects, three-
dimensions effects (mode-7 functions), etc.

We also recommend to go back now to 2.10 to practice with the program debugger , using
the example you have created.

And, of course, we recommend to read chapters 7 and 8 where the rest of the necessary
concepts for programs creation is described.

PROCESS shot(x,y)
BEGIN
 graph=3;

 REPEAT
 y-=16;
 FRAME;
 UNTIL (y<0);
END

PROCESS enemy(x,inc_x,inc_y)
BEGIN
 graph=4;
 y=-20;
 size=rand(25,100);

 REPEAT
 x+=inc_x;
 y+=inc_y;
 FRAME;
 UNTIL (y>220 OR collision(TYPE shot));

 FROM graph=5 TO 10;
 FRAME;
 END
END

Page 123

��������.

!��*��$����	��	��

.

Page 124

This chapter reviews the syntax of a program in detail. A summary of this syntax can be
found in appendix A.

The most advanced concepts about the program are described in chapter 8 , thus avoiding
to mix them with the syntax. However, some of them are used in this chapter. Thus, it is
advisable to consult the following chapter in order to obtain information about identifying
codes , types of processes , states of processes , etc.

All the programs must start with the reserved word PROGRAM followed by the name of the
program and a symbol ; (semicolon). This head is obligatory in all the programs. Before it,
only one or several comments can optionally appear.

This section of the program is optional , as its purpose deals with setting a series of
synonymous numeric values.

In a game, for instance, number 3 has been set in one or several points of the program as
the maximum lives of the leading character. If the aim is to modify this number, increasing
or decreasing it, it will be necessary to look for this number and to replace it in the program.
But there is a risk of replacing other '3' numbers appearing in the program with different
aims.

An alternative is to declare a constant called, for instance, maximum_lives as a
synonymous of the numeric value 3 and use that constant in the program instead of the
number. Now, if the aim is to replace this value by another one, it is done simply in the
declaration of the constant maximum_lives .

This section then establishes a list of names that are going to represent a series of numeric
constants. This section must obligatory start with the reserved word CONST and then, for
every declared constant, its name followed by the symbol = (assignment symbol) and a

7.1 Head of the program

7.2 Declaration of constants

�� !���.�����	��	����/�����!��*��$�

PROGRAM <name>;

CONST
 <name> = <numeric value>;
 ...

Page 125

constant expression (numeric value) must appear. After the declaration of every constant,
the symbol ; (semicolon) must appear.

Once a value has been assigned to a constant, it won’t later be possible to modify the
former in the program.

In a data declaration, three different kinds of objects can appear: a variable , a table or a
structure .

In general, a variable will store a simple numeric value. A table will store a list of numeric
values. And a structure will store a list of records of several fields (such as a list of index
cards with varied information).

Each data will belong to a specific area, depending on whether its declaration has been
made inside the GLOBAL , LOCAL or PRIVATE sections. These three sections are
optional (they may not appear in the programs if it is not necessary to declare data of these
types).

It is possible to access all the global data from any point of the program. Local data belong
to all the processes (every process has its own value in them). Finally, private data belong
to a single specific process.

Declaration of global data

This section of the program is optional. Global data, that is to say, the data that can be
used from any point of the program , are declared in this section. Therefore, a global
datum can be used for all the program’s processes.

The section must start with the reserved word GLOBAL followed by a series of
declarations of data finished with a symbol ; (semicolon).

In general, all those data that establish general conditions of the game related to several
processes are declared as global data. An example could be the score obtained by the
player, that could be stored in the score global variable. Thus, any process of the game
could increment it, if necessary.

7.3 Declaration of data

Note: All the data will be declared with a name which, from that moment, will become the
means to access or modify the information contained in those data.

Note: These three sections must always appear in this order (GLOBAL, LOCAL and
PRIVATE, when all of them appear)

GLOBAL
 <declaration of datum> ;
 ...

Page 126

Declaration of local data

This section of the programs is optional, as the local data, that is to say, the data that all
the program’s processes have are declared here, each one with its own values (such as
the x and y predefined local variables determine the coordinates of all the processes).

The section must start with the reserved word LOCAL followed by a series of declarations
of data finished with a symbol ; (semicolon).

In general, the important information of the processes, that is to say, the data to be
consulted or modified from other processes , are declared as local data.

The remaining energy of a process (a spacecraft, a shotgun, the leading character, etc.)
could be an example. This information could be stored in the energy local variable, so any
process can access or modify the energy of the rest (for instance, on colliding with them,
energy could be subtracted).

Declaration of private data

These sections of the programs are optional. Private data, that is to say, data that are
going to be used exclusively inside a process , can be declared in this section.

This section can appear either in the main program or in any other process of the program,
as the main program is also considered as a process.

This section is defined just before the BEGIN of the process that is going to use these data
and must start with the reserved word PRIVATE followed by a series of declarations of
data finished with a symbol ; (semicolon).

In general, all the data that are going to contain information necessary only for a process, as
well as those that can not be accessed from any other process, are declared as private
data.

Those variables that are going to be used as counters in a loop, variables to contain angles
or secondary identifying codes, etc. are normally defined as private data.

PRIVATE
 <declaration of datum> ;
 ...

LOCAL
 <declaration of datum> ;
 ...

Note: If a datum declared as local is to be used only inside one process, then the former
can be defined as a private datum.

Note: If you need to consult or modify a datum declared as private from another process
(datum.identifier), then this datum will have to be declared local (inside the program’s
section LOCAL). Thus, all the processes will have the datum and every process can
access its value or the value that this datum has in another process.

Page 127

Declaration of a variable

To declare a variable inside a section, it will be enough to indicate its name inside that
section. In this case, the variable will be initialised at 0 (zero).

If the aim is to initialise the variable at other values, the symbol = (assignment) will be put
after the name of the variable. The constant value at which the variable is intended to be
initialised will be put after this symbol.

A variable is a cell (or position) of the computer’s memory to which we refer by its name and
that can contain whole numeric values.

Declaration of a table

To declare a table inside a section, it will be enough to indicate its name followed by the
length of the table in square brackets. In that case, all the positions of the table will be
initialised at 0 (zero).

The table’s length is expressed as the maximum value of its index. That is to say, all the
tables range from the position 0 to the position indicated in the square brackets in their
declaration. For instance, a table declared as my_table[9], will be a table of length 10 (of 10
positions, from my_table[0] to my_table[9]).

If the aim is to initialise the different positions of the table, it is necessary to put the symbol =
(assignment) after the previous declaration and, after this symbol, a list of numeric values.

If the table is initialised with a list, then it is not necessary to indicate the table’s length in
square brackets, as the compiler will create a table with as many positions as the number of
values included in the list.

A table is a series of cells (or positions) of the computer’s memory that is called by its name,
appearing after it, in square brackets, the number of cell inside the table intended to be
accessed.

<name> [<numeric value>]

(or, if you want to initialise the table)

<name> [<numeric value>] = <list of numeric values>

(or, if it is initialised without defining its length)

<name> [] = <list of numeric values>

<name>

(or, if you want to initialise it)

<name> = <numeric value>

Page 128

For instance, if we declare a table as the following one:

we will be declaring a table whose name is my_table and that has 5 cells (or positions), from
cell no. 0 to cell no. 4. In the previous declaration, cell 0 (my_table[0]) is initialised with the
value 33, cell 1 (my_table[1]) with the value -1, etc.

The language allows us to access cell 0 simply with the name of the table (my_table), as if it
was a variable, omitting the zero in square brackets that should appear after. That is to say,
for the compiler, my_table[0] will be the same as my_table (the first cell of the table).

Declaration of a structure
To declare a structure inside a section, it is
necessary to put the reserved word STRUCT
preceding its name. After it, the number of
records of the structure must be indicated, in
square brackets.

After this head defining the name of the structure
and the number of records, all the data that
belongs to the structure and that will comprise its
fields, will be declared. Finally, the reserved word
END must appear to finish the declaration.

The records’ number of the structure is
expressed as the maximum records’ number of the structure. That is to say, all the
structures have from record 0 to the record indicated in the square brackets. For instance, a
structure declared as STRUCT my_structure[9] , will be a structure of 10 records (from the
record my_structure[0] to my_structure[9]).

A structure is like an index card file (records), each of them with different written information
(fields). For instance, a structure in which we could include the initial and final positions of a
series of processes of a game could be as follows (an index card file with 10 cards, each of
them indicating the initial (x, y) and the final (x, y) of a process):

This structure, that would be accessed with the
name movement_enemies , has ten records and
four fields in each record (two coordinates that
determine the initial position of the process
[x_initial ,y_final], and two that determine the
final position [x_final, y_final]).
Movement_enemy[0].x_final would be used to
access the x final of the first enemy.

The language allows us to access the record 0 of the structure simply with the name of the
structure (movement_enemies.x_final), omitting the zero in square brackets that should
come next. That is to say, for the compiler movement_enemies[0].x_final will be the same
as movement_enemies.x_final .

Each field of the structure may be a variable, a table or another complete structure, with its
different records and fields.

 my_table[]=33, -1, 6, -3, 99;

STRUCT <name> [<numeric value>]
 <declaration of datum> ;
 ...
END

(or, if the structure is initialised)

STRUCT <name> [<numeric value>]
 <declaration of datum> ;
 ...
END = <list of numeric values>

STRUCT movement_enemies[9]
 x_initial;
 y_initial;
 x_final;
 y_final;
END

Page 129

If the aim is to initialise the structure (establishing the initial values of its fields in the
different records), the symbol = (assignment) must be put after the reserved word END
followed by a list of numeric values. If the structure is not initialised in this way, all the fields
will be put at 0 by default.

Keep in mind that , in order to initialise a structure, the first values will be the values of the
fields of the first record, the following ones those of the second record, and so on. For
instance, if the following declaration is made:

First, it must be taken into account that the structure a[] has 3 records (from a[0] to a[2])
and that there are three fields (b, c[0] and c[1]) in each record. Then, the previous
declaration will initialise the structure in the following way:

Definition of a list of numeric values
The lists of values are basically a series of numeric values separated by commas and they
are used to initialise the values of tables or structures .

An example of a list of constants is shown below:

 1, 2, 3, 4, 5;

But, besides this basic definition, the use of the operator DUP is allowed to repeat a series
of constants a specific number of times. For instance, the following list:

 0, 100 DUP (1, 2, 3), 0;

It is a list of 302 constants (0,1,2,3,1,2,3, ...,1,2,3,0). That is to say, the operator DUP
(duplication) allows us to repeat the sequence appearing after it in brackets, the indicated
number of times.

It is possible to nest operations DUP. For instance, the following list:

 2 DUP (88, 3 DUP (0, 1), 99);

would be equivalent to:

 88, 0, 1, 0, 1, 0, 1, 99, 88, 0, 1, 0, 1, 0, 1, 99;

STRUCT a[2]
 b;
 c[1];
END = 1,2,3,4,5,6,7,8,9;

a[0].b=1;
a[0].c[0]=2;
a[0].c[1]=3;
a[1].b=4;
a[1].c[0]=5;
...

Page 130

Moreover, the omission of the operator DUP is allowed; in other words, 2 DUP (0, 1) is
equivalent to 2(0, 1).

The operator DUP is specially useful to initialise structures. If, for instance, the aim is to
initialise the following 100 record structure:

with the fields b initialised at 0, the fields c[9] at 1 (all its
positions) and the fields d[9] at 2, the following list of
initialisation would be used:

100 DUP (0, 10 DUP (1), 10 DUP (2)) ;

The main code of a program starts with the reserved word BEGIN.
After it, any number of statements may appear. The main code
finishes with the reserved word END.

This code controls the main process of the program, which initialises
the program, controls the loops of the menu and game, and finishes
the program.

An example of a main code’s block is now shown:

7.4 Main code

STRUCT a[99]
b;
c[9];
d[9];

END

BEGIN
 <statement> ;
 ...
END

PROGRAM my_game; // Head of the program
GLOBAL
 option; // Option chosen in the menu.

BEGIN // Beginning of the main code.

 Set_mode(m640x480); // Initialisation.
 Set_fps(24, 4);
 // ... Loads files, sounds, etc.

 REPEAT // Beginning main loop.

 option=0; // Control loop of the options menu.
 //... Initialises the options menu.
 REPEAT
 // ... Actions to be performed in the menu.
 IF (key(_enter)) option=1; END // Playing is chosen.
 IF (key(_esc)) option=2; END // Finishing is chosen.
 FRAME;
 UNTIL (option>0);
 IF (option==1) // If the playing option has been chosen.
 //... Initialises regions, scroll, etc.
 //... Creates the game processes.
 //... Loop of game’s control, waiting for its end.
 END
 UNTIL (option==2); // End of the main loop.

Page 131

The end of the main code’s execution does not imply the end of the program’s execution, as
it will continue if there are alive processes. If the aim is to force the end of the program
when the code finishes, it is possible to use, for instance, the let_me_alone() function just
before the END that marks the main code’s end, in order to eliminate the rest of the
processes that may remain alive.

The execution of the program can also be finished at any of its points with the exit()
function, which will automatically eliminate all the processes.

A process must start with the reserved word PROCESS followed by its name and its call
parameter in brackets. The parameters are a list of data in which the process is going to
receive different values. The brackets are obligatory even if the process has no parameters.

After this head, a PRIVATE section, declaring data to be used by the process exclusively,
may be put optionally.

And finally, the process code, that is a sequence of statements between the reserved words
BEGIN and END, will be specified.

A process normally corresponds with a kind of object of the game, such as a spacecraft, an
explosion, a shot, etc. Inside the process’ code, a loop (in which all the necessary values to
display this object, such as graphic, coordinates, etc., will be established) is normally
implemented. Then, with the FRAME statement, the order to display the object with the
established attributes is given.

7.5 Declaration of processes

let_me_alone(); // Finishes all the processes.

END // End of the main code.

//... Declaration of the program’s processes.

PROCESS <name> (<list of parameters>)
<Declaration of private data>
BEGIN
 <statement> ;
 ...
END

PROGRAM my_game;
PRIVATE
 id2;
BEGIN
 id2=my_process(160, 100)
 // ...
END

Page 132

As it can be noticed in this example, when a process is called, it returns its identifying
code (that, in the example, is stored in the private variable of the main program id2).

If the aim is to implement a process in the style of the functions of other languages that
returns a numeric result , then it is necessary to use the RETURN (<numeric value>)
statement, not using the FRAME statement inside the process, as this statement returns to
the father process (caller), returning the process’ identifying code as a return value.

Parameters of a process
The parameters of a process are basically a list of data in which the process will receive
different information every time it is invoked (called or used) from another process.

The processes can receive parameters in the following types of data:

A predefined local datum (such as x, size , flags , ...).
A local datum defined inside the LOCAL section.
A global datum defined inside the GLOBAL section.
A private datum which must not necessarily be declared inside the PRIVATE section.

In all these cases, it is understood that a datum may be referred to a variable, to a specific
position of a table or to an element inside a structure.

As an example of the different types of parameters, a program with a process that receives
five parameters different from the types respectively indicated in the previous list is now
shown.

PROCESS my_process(x, y)
PRIVATE
 n;
BEGIN
 graph=1;
 FROM n=0 TO 99;
 x=x+2;
 y=y+1;
 FRAME;
 END
END

PROGRAM my_game;
GLOBAL
 score=0;
LOCAL
 energy=0;
BEGIN
 my_process(1,2,3,4);
 // ...
END

PROCESS my_process(x, energy, score, n)
BEGIN
 // ...
END

Page 133

It is not necessary to declare the n private variable, but it could be declared in the following
way (after the head of the process, and before its BEGIN):

PRIVATE
n;

The types of statements existing in the DIV language are shown in this section.

The statements always appear as a set, from none (which makes no sense) to as many as
necessary. All the statements will sequentially be executed (the first one, the second one,
the third one...), unless the statements that can control the program’s flow (control, loops
and break statements) determine some exceptions.

The assignment statements are used to calculate expressions and to assign them to a
datum.

The datum in which the result of the expression is going to be stored must be indicated,
followed by the symbol = (symbol of the assignment), as well as the numeric or logical
expression to evaluate when the statement is executed. After this statement, the symbol ;
(semicolon) must always be put.

In an assignment statement it is only allowed to assign values to objects such as any kind of
variables , to a position of a table , or to an element of a structure .

It is not possible to assign a value to a constant , to a function or to a process or, in
general, to any numeric or logical expression .

Now, a program with several assignments is shown.

7.6 List of statements

7.6.1 Assi gnment statement

Note: Receiving a parameter (such as the global variable score) in a global data is
equivalent to making the assignment (score=3;) and then, calling the process.

<reference to a datum> = <expression> ;

PROGRAM my_game;
BEGIN
 x = x+1;
 angle = (angle*3)/2-pi/2;
 size = (x+y)/2;
 z = abs(x-y)*3-pow(x, 2);
 // ...
END

Page 134

This is the basic form of the assignments, even if there are other symbols of assignment
that, instead of assigning a new value to the referred datum, modify its value.
These are the symbols of operative assignments :

+= Adds to the datum the result of the expression
 Example: x=2; x+=2; is equivalent to x=4;

-= Subtracts from the datum the result of the expression
 Example: x=4; x-=2; is equivalent to x=2;

*= Multiplies the datum by the result of the expression
 Example: x=2; x*=3; is equivalent to x=6;

/= Divides the datum by the result of the expression
 Example: x=8; x/=2; is equivalent to x=4;

%= Puts in the datum the remainder of dividing it by the result of the expression
 Example: x=3; x%=2; is equivalent to x=1;

&= Performs an AND (binary and/or logical) between the datum and the result of the
expression, assigning it as a new datum’s value
 Example: x=5; x&=6; is equivalent to x=4;

|= Performs an OR (binary and/or logical) between the datum and the result of the
expression, assigning it as a new datum’s value
 Example: x=5; x|=6; is equivalent to x=7;

^= Performs an exclusive OR (XOR binary and/or logical) between the data and the result of
the expression, assigning it as a new datum’s value
 Example: x=5; x^=3; is equivalent to x=3;

>>= Rotates the datum to the right as many times as indicated by the result of the
expression (each rotation to the right is equivalent to dividing the datum by 2)
 Example: x=8; x>>=2; is equivalent to x=2;

<<= Rotates the datum to the left as many times as indicated by the result of the expression
(each rotation to the left is equivalent to multiplying the datum by 2)
 Example: x=2; x<<=2; is equivalent to x=8;

Within the category of assignment statements, the increments and decrements of a datum
are also allowed. For instance, if we wanted to add 1 to the local variable x we could do it
either with the x=x+1; or x+=1; statements, or with the operator of increment: x++; or ++x; .

Page 135

The IF statement is used to execute a block of statements optionally, when a condition is
complied. In the second aforementioned variant, another block of statements will also be
executed (inside the ELSE section) when the condition is not complied.
A program with several IF statements is now shown.

It is possible to nest IF statements with no limits. That is to say, more IF statements can be
put inside the part that is running when the condition is complied (IF part) or inside the one
that is executed when the condition is not complied (part ELSE).

7.6.2 IF statement

IF (<condition>)
 <statement> ;
 ...
END

(or)

IF (<condition>)
 <statement> ;
 ...
ELSE
 <statement> ;
 ...
END

PROGRAM my_game;
BEGIN

 IF (key(_esc))
 exit("Good by!", 0);
 END

 IF (x>100 AND x<220)
 y=y+4;
 ELSE
 y=y-8;
 END

 IF (size>0)
 size=size-1;
 END

 IF (timer[5]>1000)
 z=1;
 ELSE
 z=-1;
 END

 // ...
END

Page 136

A SWITCH statement is made up with a series of CASE sections and, optionally, a
DEFAULT section.

When a SWITCH statement is executed, the expression is
first evaluated and then, if the result is within the range of
values included in the first CASE section, its statements will
be executed and the statement will finish. If the result of the
expression is not in the first CASE, it will be looked for in the
second, third, etc. CASE. Finally, if there is a DEFAULT
section and the result of the expression has not coincided
with any of the CASE sections, then the statements of the
DEFAULT section will be executed.

The SWITCH statement of this program will change the sign
of the x variable if it is equal to 1, 2, 3 or 99. Otherwise, the
statement will put the variable at 0.

Range of values of a section CASE
A value, a range of values minimum .. maximum (it is
important to separate these values by two dots , not by
three), or a list of values and/or ranges separated by
commas may be specified in a CASE section. For instance,
the previous statement could have been expressed as
follows:

7.6.3 SWITCH statement

SWITCH (<numeric expression>)
 CASE <range of values> :
 <statement> ;
 ...
 END
 ...
END

(or)

SWITCH (<numeric expression>)
 CASE <range of values> :
 <statement> ;
 ...
 END
 ...
 DEFAULT :
 <statement> ;
 ...
 END
END

PROGRAM my_game;
BEGIN
 SWITCH (x)
 CASE 1:
 x=-1;
 END
 CASE 2:
 x=-2;
 END
 CASE 3:
 x=-3;
 END
 CASE 99:
 x=-99;
 END
 DEFAULT:
 x=0;
 END
 END
END

SWITCH (x)
 CASE 1..3,99:
 x=-x;
 END
 DEFAULT:
 x=0;
 END
END

Page 137

Once one of the CASE sections of a SWITCH statement has been executed, no more
sections will be executed , even if they also specify the result of the expression, for
instance, in the following statement:

The x=x+1; section will be executed and then, the statement
will finish and the y=y-1; section won’t be executed as, even
if the result of the evaluated expression (4) is included in it, it
is also included in the previous section, (as 4 is within the
range 3..5).

It is not necessary to arrange the CASE sections according
to their values (smaller to larger, or larger to smaller), but it
is indispensable that the DEFAULT section (if it exits) is the

last section. There can only be one DEFAULT section.

It is possible to nest SWITCH statements with no limits. That is to say, new SWITCH
statements (and any other kind of statement) can be put inside a CASE section.

The WHILE statement implements a loop . That is to say, it
is capable of repeating a group of statements a specific
number of times .

In order to implement this loop, the condition that has to be
complied for the group of statements to be executed must

be specified in brackets, after the reserved word WHILE. All the statements that necessarily
have to be repeated will be put after the specification of this condition. Finally, the end of the
loop will be marked with the reserved word END (it doesn’t matter whether more words END
appear inside the loop when they belong to internal statements of that loop).

When a WHILE statement is executed, the specified verification will be carried out. If the
result is true, the internal statements will be executed. Otherwise, the program will continue
from the END, that marks the end of the WHILE.

If the internal statements have been executed (what is called to make a loop’s iteration),
the condition will be verified again. If it is true, another iteration will be made (the internal
statements will be executed again). This process will be repeated until it is verified that the
condition of the WHILE is false.

If the condition turns to be false directly while a WHILE statement is executed, then the
internal statements will never be executed.

In this example, the x local variable (x coordinate of the
process) will be put at zero and then, providing that x is less
than 320, 10 will be added to x and a FRAME will be
performed.

7.6.4 WHILE statement

SWITCH (2+2)
 CASE 3..5:
 x=x+1;
 END
 CASE 2,4,6:
 y=y-1;
 END
END

WHILE (<condition>)
 <statement> ;
 ...
END

PROGRAM my_game;
BEGIN
 x=0;
 WHILE (x<320)
 x=x+10;
 FRAME;
 END
END

Page 138

REPEAT
 <statement> ;
 ...
UNTIL (<condition>)

A BREAK statement inside a WHILE loop will immediately finish it, continuing the program
from the statement next to that loop.

A CONTINUE statement inside a WHILE loop will force the program to verify the initial
condition immediately and, if it is true, to execute again the internal statements from the
beginning (after the WHILE). If the condition turns to be false, the CONTINUE statement will
finish the loop.

The internal statements of a WHILE loop can be as many as desired, and of any kind,
obviously including new WHILE loops.

The REPEAT ... UNTIL(...) statement is very similar to the
WHILE statement and also implements a loop .

It must start with the reserved word REPEAT, followed by
the statements that you want to repeat one or more times,
and the end of the statement will be determined by putting

the reserved word UNTIL followed by the condition that has to be complied for the
statement to finish .

When a REPEAT statement is executed, the internal statements (those placed between the
REPEAT and the UNTIL) will be executed first and then, the condition specified in the
UNTIL will be verified. If it is still false, the internal statements will be executed again. The
process will be repeated until the condition of the UNTIL turns to be true, continuing then
the execution of the program after this statement.

Every time that the internal statements are executed, a loop’s iteration has been
performed. The REPEAT ... UNTIL() (the <condition > is complied) statement will always
execute the internal statements at least once, as it always verifies the condition after their
execution.

In this example, the x local variable (x coordinate of the
process) will be put at zero and then, 10 will be added to x
and a FRAME will be performed until x becomes a number
bigger than 320.

A BREAK statement inside a REPEAT loop will
immediately finish it, continuing the program from the
following statement to that loop.

A CONTINUE statement inside a REPEAT loop will force the program to make the
verification of the UNTIL immediately and, if it is true, it will execute again the internal
statements from the beginning (after the reserved word REPEAT). If the condition turns to
be true, the CONTINUE statement will finish the loop.

The internal statements of a REPEAT loop can be as many as desired, and of any kind,
obviously including new REPEAT loops.

7.6.5 REPEAT statement

PROGRAM my_game;
BEGIN
 x=0;
 REPEAT
 x=x+10;
 FRAME;
 UNTIL (x>320)
END

Page 139

The LOOP statement implements an infinite loop . That is
to say, it indefinitely repeats a group of statements .

In order to implement this loop, it is necessary to start with
the reserved word LOOP, followed by the statements
intended to be repeated continuously, putting the reserved
word END at the end.

When a LOOP ... END statement is found in a program, all the internal statements of that
loop will repeatedly be executed from this position.

In order to finish a LOOP loop, it is possible to use the BREAK statement which, on being
executed inside a loop of this kind, will force the program to continue from the END.

The CONTINUE statement inside a loop will finish the current iteration and will start the
following one (the program will go on running after the reserved word LOOP.

In this example, the x local variable (x coordinate of the
process) will be put at zero and then, 1 will be added to it
and a FRAME will continuously be performed. If the ESC key
is pressed, the BREAK statement will be executed, finishing
the LOOP loop.

The internal statements of a LOOP loop can be as many as
desired, of any kind, obviously including new LOOP loops.

The FOR statement (replica of
the C language) also
implements a loop . After the
reserved word FOR, three
different parts must be specified
in brackets, separated by

symbols ; (semicolon). These three parts, that are optional (they can be omitted), are the
following ones:

Initialisation . An assignment statement is normally codified in this part. This kind of
statement establishes the initial value of the variable that is going to be used as a
counter of the loop’s iterations (each execution of the inner group of statements is called
a loop’s iteration). The assignment statement x=0, that would put the x variable at zero at
the beginning of the loop (value for the first iteration), is an example.

7.6.6 LOOP statement

7.6.7 FOR statement

LOOP
 <statement> ;
 ...
END

PROGRAM my_game;
BEGIN
 x=0;
 LOOP
 IF (key(_esc))
 BREAK;
 END
 x=x+1;
 FRAME;
 END
END

FOR (<initialisation> ; <condition> ; <increment>)
 <statement> ;
 ...
END

Page 140

Condition . A condition is specified in this part. Just before each iteration, this condition will
be checked and, if it is true , the group of statements will be executed. If the condition is
false, the FOR loop will finish, continuing the program after the END of the FOR loop. An
example of condition can be x<10, that would allow the inner group of statements to be
executed only when the x variable is a number less than 10.

Increment . The increment of the variable used as a counter for each iteration of the loop
is indicated in the third part. It is normally expressed with an assignment statement. For
instance, the x=x+1 statement would add 1 to the x variable after each iteration of the loop.

The group of inner statements of the loop that are going to be repeated sequentially while
the condition of continuance (second part) is complied, must appear after the definition of
the FOR loop with its three parts. After this group of statements, the reserved word END will
determine the end of the FOR loop.

When a FOR statement appears in a program, the part of the initialisation will be executed
first, checking the condition. If it is true, the inner group of statements first and, the part of
the increment then, will be executed, being the condition checked again, etc. If, before any
iteration, the condition turns to be false, the FOR statement will immediately finish.

A program with a FOR loop containing the three parts mentioned in the previous sections is
now shown.

This loop would first be executed with the
x variable equal to 0, the second one
equal to 1, ..., and the last variable equal
to 9. The part of the increment would be
executed after this iteration, becoming x
equal to 10. Then, on checking the
condition of continuance in the loop (x is
less than 10), if it is false, the loop will
finish.

As it has been mentioned, the three parts in the definition of the loop are optional. If the
three were omitted:

Then, this loop would be equivalent to a LOOP ... END loop.

Moreover, several parts of initialisation, condition or increment can be put in a FOR loop,
separated by commas. At first, all the initialisations will be executed. Then, all the conditions
of continuance will be checked (if any of them turns to be false, the loop will finish). The
inner statements and, after every iteration, all the increments, will finally be checked.

A BREAK statement inside a FOR loop
will immediately finish it, continuing the
program from the following statement of
this loop.

PROGRAM my_game;
BEGIN
 FOR (x=0 ; x<10 ; x=x+1)
 // The inner statements will be put here.
 END
END

FOR (; ;)
 // ...
END

PROGRAM my_game;
BEGIN
 FOR (x=0, y=1000 ; x<y ; x=x+2, y=y+1)
 // The inner statements will be put here.
 END
END

Page 141

A CONTINUE statement inside a FOR loop will force to execute the part of the increment
directly and then, to verify the condition of continuance. If it is true, then the inner
statements will be executed again from the beginning. If the condition turns to be false, then
the CONTINUE statement will finish the FOR loop.

A FOR loop is practically equivalent to a WHILE loop, implemented in the following way:

With the only exception that a
CONTINUE statement, inside this WHILE
loop, would not execute the part of the
increment, while it would do so inside a
FOR loop.

If, after the execution of the initialisation,
the condition turns to be false directly
inside a FOR loop, no inner statements
will ever be executed.

The inner statements of a FOR loop can be as many as desired, of any kind, obviously
including new FOR loops.

The FROM statement is the last one implementing a loop . For that, a variable of the
process itself that can be used as a loop counter is needed.

The reserved word FROM must be put before the statements that will comprise the inner
group of statements. This word will be followed by the name of the counter variable , the
symbol of assignment (=), the initial value of the variable, the reserved word TO and,
finally, the final value of the variable. The symbol ; (semicolon) must be put after this
declaration of the loop FROM.

The inner group of statements that is intended to be repeated a specific number of times is
put after this head defining the conditions of the loop. Finally, the reserved word END will be
put.

The first iteration will be performed with the initial value in the variable used as a counter.
After this iteration, 1 will be added to this variable (if the initial value is less that the final
value). Otherwise 1 will be subtracted from it. After having updated the value of the

7.6.8 FROM statement

PROGRAM my_game;
BEGIN
 x=0;
 WHILE (x<10)
 // The inner statements will be put here.
 x=x+1;
 END
END

FROM <variable> = <numeric value> TO <numeric value> ;
 <statement> ;
 ...
END

(or)

FROM <variable> = <numeric value> TO <numeric value> STEP <numeric value> ;
 <statement> ;
 ...
END

Page 142

variable, it is necessary to pass to the following iteration, provided that the value of this
variable has not reached (or exceeded) the final value of the loop.

The reserved word STEP may be put as a second meaning of the FROM statement, after
the initial and final values of the statement. This word must be followed by a constant value
indicating the increment of the counter variable after every iteration of the loop, instead of 1
or -1, which are the increments that will be performed by default if the STEP declaration is
omitted.

The following example shows a program with two loops FROM: one without STEP
declaration (with increment or decrement by default) and the other with it.

The first loop will be executed 10 times with the x
variable. Its value will range between 9 and 0 in the
different iterations. By default, 1 will be subtracted from
the variable each time, as the initial value (9) is bigger
than the final value (0).

In the second loop, constant 2 is indicated as the
increment of the variable. Thus, the loop will be executed
5 times with the x variable, whose values will be 0, 2, 4, 6
and 8, respectively, in the consecutive iterations. As it can

be noticed, no iteration will be performed with x being equivalent to 9, even if it is the loop’s
final value . By default, if 2 had not been specified as STEP of the loop, 1 would have been
added to the x variable after each iteration.

A loop FROM can always be performed with the FOR
statement, as it is now shown (with two loops equivalent
to those of the previous example).

� If the initial value is less than the final value, it is not possible to specify a negative value
in the STEP declaration.

� If the initial value is bigger than the final value, it is not possible to specify a positive

value in the STEP declaration.

A BREAK statement inside a loop FROM will immediately finish it, continuing the program
from the following statement to this loop (after the END).

A CONTINUE statement inside a FROM loop will force the program to increment the
variable used as a counter immediately and then, if the final value has not been exceeded,
to start the following iteration.

The statements inner to a loop FROM may be as many as desired, of any kind, obviously
including new loops FROM.

PROGRAM my_game;
BEGIN
 FROM x=9 TO 0;
 // Inner statements ...
 END
 FROM x=0 TO 9 STEP 2;
 // Inner statements ...
 END
END

PROGRAM my_game;
BEGIN
 FOR (x=9 ; x>=0 ; x=x-1)
 // Inner statements ...
 END
 FOR (x=0 ; x<=9 ; x=x+2)
 // Inner statements ...
 END
END

Note: The initial and final values of a loop FROM
must be different.

Page 143

A BREAK statement inside a loop will immediately finish it, continuing the program from the
following statement to that loop. This statement can only be put inside the following loops:
WHILE, REPEAT, LOOP, FOR or FROM.

A BREAK statement will make the program continue its execution after the END or the
UNTIL of the loop closer to the statement.

If there are several nested loops (one inside another), the BREAK statement will only exit
the innermost loop.

In this example, the BREAK statement will exit
the REPEAT ... UNTIL (when the ESC key is
pressed), but not the LOOP ... END.

Important: The BREAK statement is not valid
to finish IF, SWITCH (or the CASE sections of
this statement), or CLONE statements.

A CONTINUE statement inside a loop will force the program to finish its current iteration and
start the following iteration. We call iteration to each execution of the set of statements
internal to a loop (the statements between a LOOP and its END, for instance). This
statement can only be put inside one of the following loops:

LOOP ... END
A CONTINUE inside this loop will jump to the LOOP.

FROM .. = ..TO .. STEP .. ; ... END
A CONTINUE inside this loop will perform the increment (STEP) and, if the value indicated
in the TO has not been passed, the program will continue at the beginning of the loop.

REPEAT ... UNTIL (..)
A CONTINUE inside this loop will jump to the UNTIL.

WHILE (..) ... END
A CONTINUE inside this loop will jump to the WHILE.

FOR (.. ; .. ; ..) ... END
A CONTINUE inside this loop will perform the increment and the comparison. If the latter is
true, the program will continue at the beginning of the loop. But if it is false, the program will
continue after the END of the FOR.

If there are several nested loops (one inside another), the CONTINUE statement will take
effect only in the inner loop.

7.6.9 BREAK statement

7.6.10 CONTINUE statement

PROGRAM my_game;
BEGIN
 LOOP
 REPEAT
 IF (key(_esc)) BREAK; END
 //...
 UNTIL (x==0);
 //...
 END
END

Page 144

In this example, after the whole loop has been executed, x
will be equal to 10 and y will be equal to 5 as, providing
that x is less than 5, the CONTINUE statement prevents
the y++; statement from being executed.

The RETURN statement immediately finishes the current process, as if the END of its
BEGIN was reached.

When this statement is included in the main code, it will finish the current process. But if
there are alive processes, they will go on running. For instance, the exit() function can be
used to finish a program and all its processes.

A RETURN inside a process will finish it, killing this
process.

In this example, the RETURN statement will be executed
by pressing the ESC key, finishing the program.

Use of RETURN to return a value
It is possible to design processes with a performance similar to the functions of other
programming languages, that receive a series of parameters and return a value . For
instance, a process receiving two numeric values and returning the biggest one.

For that, this statement must be used with the following syntax:

It is also important not to use the FRAME statement inside the process, as this statement
will immediately return to the calling process. When the compiler finds the FRAME
statement inside a PROCESS, it directly classes it as a process, ruling out its hypothetical
use as a function.

The example proposed before is shown next: an implementation of the mathematical
function max that returns the greater of its two parameters.

7.6.11 RETURN statement

PROGRAM my_game;
BEGIN
 FOR (x=0,y=0;x<10;x++)
 IF (x<5) CONTINUE;
END
 y++;
 END
END

Important: The CONTINUE statement is not valid
inside IF, SWITCH (or the CASE sections of this
statement), or CLONE statements (as these
statements do not implement loops and, therefore,
they do not make iterations).

PROGRAM my_game;
BEGIN
 LOOP
 IF (key(_esc))
 RETURN;
 END
 FRAME;
 END
END

RETURN(<expression>)

Page 145

After the execution of this program, the x variable of the
main process will be equal to 8 (3+5).

The FRAME statement is an essential part of the language. A program’s mechanics
described below in general terms:

� The main program starts its execution. This process may create more processes
(objects of the game) at any point. All the processes may be finished at any moment,
and they may create or eliminate other processes.

� The games will always be displayed frame by frame. In each frame, the system will

execute all the processes existing at that moment, one by one, until each one executes
the FRAME statement, which will indicate that it is ready for the next display (frame).

� In the preparation of each frame, all the processes will be executed in the established
priority order (the priority local variable of the processes determines this order).

Therefore, this statement is similar to an order for the
processes to be displayed.

If a process starts its execution and it neither finishes
nor executes this statement, then the program will
become blocked, as there is a process that is never
ready for the next display. Therefore, the system
won’t be capable of showing the following frame.

In this program, the main process (my_game type
process) creates other two processes (my_process
type). From that moment, the three processes will
continuously be executed, each one to their FRAME
statement. But if the ESC key is pressed, then the
main process will create a new process
(my_second_process type) that will remain in a
LOOP loop indefinitely, without executing any
FRAME. Consequently, the program will be
interrupted (the system will report such a situation
after few seconds; see the max_process_time
global variable).

7.6.12 FRAME statement

PROGRAM my_game;
BEGIN
 x=max(2,3)+max(5,4);
END

PROCESS max(a,b)
BEGIN
 IF (a>b)
 RETURN(a);
 ELSE
 RETURN(b);
 END
END

Important: By default, if the RETURN statement is
used without the expression in brackets or the
FRAME statement is used in a process, its return
value will be its identifying code of the process.

PROGRAM m y_gam e ;
BEGIN
 m y_process();
 m y_process();
 LOOP
 IF (key(_esc))
 m y_second_process();
 END
 FRAME;
 END
END

PROCESS m y_process ()
BEGIN
 LOOP
 FRAME;
 END
END

PROCESS m y_second_process()
BEGIN
 LOOP
 END
END

Page 146

Basically, all the processes that correspond with objects of a game construct a loop inside
which, every frame establishes all its display values (x, y, graph, size, angle, ...) executing
then the FRAME statement.

Synchronisation of processes
It is possible to use this statement with the following syntax:

By putting in brackets a whole percentage, from 0 to 100 or bigger, after the reserved word
FRAME.

This figure will indicate the percentage of the following frame, completed by the process.
That is to say, the absence of this percentage is equivalent to putting FRAME(100) (100%
of the work previous to the following display has been completed by the process).

For instance, if a process executes the FRAME(25) statement in a loop, it will need to
execute it 4 times before it is ready for the next display (as 4*25% is the 100%).

On the other hand, if a process executes the FRAME(400) statement inside its loop, after its
first execution, it will have completed 400% the display. Therefore, even after the display, a
completed 300% of display will still be missing. For that, in the preparation of the following 3
frames the system won’t execute this process, as it is ready for the display. Then, this
process would be executed just once every 4 frames (unlike the example of the previous
paragraph, in which it was executed 4 times every game’s frame).

The processes won’t reach the next display unless they give 100%, at least . For instance, if
a process always executes FRAME(80) statements, it will execute them twice before the
first display, so it will have completed 160% (2*80%) the display. Therefore, it will have
precompleted 60% (160%-100%) for the next display. For that reason, in the second display
it will only require a FRAME(80) statement to be displayed, as this 80%, plus the remaining
60% of the first display, will be equal to a 140% completed. Therefore, it will immediately be
displayed ,and a 40% will be even left to prepare the next frame.

FRAME(<percentage>)

Note: A FRAME(0) statement completing a 0% of the next display only makes sense
in the two following cases:

� It can be a way to force the system to execute in this point the rest of the
processes having the same priority as the current one and, after them, the system
will execute the latter again.

� It can also be a way to initialise functions such as get_id() or collision() , as they

return some specific values for every frame. If the aim is to obtain values again, it
is possible to execute a FRAME(0) statement that will be interpreted as a new
frame by these functions.

Page 147

This statement creates a new process identical to the
current one, with the exception that the statement between
the reserved words CLONE and END will only be executed
in the new process, but not in the current one.

For instance, if any process of the program, with specific coordinates (x, y) and with a
specific graphic (graph), executes the following statement:

CLONE
 x=x+100;
END

A new process will be created, identical to the former one, with the same graphic and the
same values in all its variables, with the exception of the x coordinate that, in the new
process, will be placed 100 pixels farther to the right.

This statement is used to create replicas of a process, dividing it into two processes (almost) similar.

In this example, the 2 CLONE statements will create 3
copies of the main process (and not 2, as it could have been
expected).

On executing the first CLONE statement, a new process will
be created. Thus, there will be 2 processes: one in (x=0,y=0)
and the other in (x=10,y=0). These two processes will
execute the second CLONE statement. The first one (the
original one) will create a new process in (x=0, y=10), and
the second one will create the new process in (x=10, y=10).

To create only 2 copies of the original process, the program
could have been constructed, for instance, in the following way:

The original process (x=0,y=0) will create one in (x=10, y=0)
and the latter will create another one in (x=10, y=10).
Therefore, only two copies of the original will be created.

Much care must be taken when it comes to using the
CLONE statement sequentially or inside a loop , as it is
necessary to take into account that the first 'clones ' may
also create new 'clones '.

This statement can be used without putting statements
between the words CLONE and END. But, intending to have
two identical processes with the same coordinates, the same
graphic and executing the same code, seems to make little
sense, at least at first.

7.6.13 CLONE statement

CLONE
 <statement> ;
 ...
END

PROGRAM my_game;
BEGIN
 // ...
 x=0;
 y=0;
 CLONE
 x=x+10;
 END
 CLONE
 y=y+10;
 END
 // ...
END

PROGRAM my_game;
BEGIN
 // ...
 x=0;
 y=0;
 CLONE
 x=x+10;
 CLONE
 y=y+10;
 END
 END
 // ...
END

Page 148

The DEBUG statement will call the interactive debugger when it is executed. It is normally
used to debug programs, that is to say, to find possible errors of the programs. On some
occasions, it is normally put in the following points:

� Where you want to verify that a part of the program has done what was expected. After
the execution of that part, DEBUG will call the debugger, from which it is possible to
check all the active processes and the value of all their variables.

� When you are not very sure whether something can happen in a program, you can put

this statement in that point to report you whether what we are expecting actually
happens.

This statement is only used temporarily, until the error that is looked for is found. From that
moment, the statement won’t be necessary. Thus, it can be removed from the program
since it has no additional effect.

In this example, it is verified that, in a specific point of the
program, the x coordinate of the process is not a negative
number (less than zero). If this happens, the debugger will
be called to find out why it has happened.

When this statement is executed, a dialog box appears, offering us the following options:

� To disable the DEBUG statement, preventing it from being activated in this execution of
the program.

� To stop the program and enter the debugger, to be able to examine all the processes

and their variables.

� Or to finish the execution of the program immediately, returning to its edition in the

windows’ graphic environment.

Moreover, if the escape key ESC is pressed in that box, the DEBUG statement will simply
be ignored, and the program will continue to be executed as usual.

On invoking the debugger in this way, the program will always be interrupted just before
starting the processing of a new frame. All the processes to be executed will appear before
the next display.

7.6.14 DEBUG statement

PROGRAM my_game;
BEGIN
 // ...
 IF (x<0)
 DEBUG;
 END
 // ...
END

Note: When a program is executed from the windows’ graphic environment, the
debugger can be called at any moment by pressing the F12 key.

Page 149

��������0

!��*��$���������

0

Page 150

The last concepts essential to create programs in DIV Games Studio are described in this
last chapter. For further information, consult the appendixes and the help hypertext inside
the graphic environment.

The blocks of the programs starting with the reserved word PROCESS determine the
performance of a specific process type. Then, when the program is executed, any number
of processes of this type will be able to exist at a specific moment. Each of these processes
will have a different identifying code , but all of them are of the same type.

In this example, four types of processes are defined:
my_game (the type of the program’s initial process),
spacecraft , enemy and shot .

The number of processes of each of these types existing in
the game depends on the number of calls made to these
processes.

All the spacecraft type processes will always execute the
statements defined in the PROCESS spacecraft() of the
program.

A "process type" is a numeric code referred to the
name of the PROCESS that determines how the
process works during the game. This numeric code can
be obtained with: TYPE <name_of_the_process>.

TYPE is an operator defined in the language that, applied
to a process name, returns this numeric code.

For instance, TYPE spacecraft will be equivalent to a specific numeric constant and TYPE
enemy will be equivalent to another one.

All the processes have a local variable containing this numeric code, which is:

reserved.process_type

8.1 Types of processes

�� !���0���������*�!��*��$�'� �1��������������

PROGRAM my_game;
BEGIN
 // ...
END

PROCESS spacecraft()
BEGIN
 // ...
END

PROCESS enemy()
BEGIN
 // ...
END

PROCESS shot()
BEGIN
 // ...
END

Page 151

Why is the process type for?
The process type is used for several things, as mentioned below:

� For the get_id() function that receives a process type (for instance, get_id(TYPE
enemy)) as a parameter and returns the identifying codes of the processes of this type
existing in the game at that moment.

� For the collision() function is similar to the previous one, with the proviso that it returns

the identifying codes of the processes with which it is colliding (that is to say, the
graphics of both processes are partially superposed).

� For the signal() function, that may send a signal to all the existing processes of a

specific type.

� Or to verify, from a process’ identifying code, what kind of process it is (type spacecraft,

type shot, etc.).

A process is an object independent of the program, that executes its own code and that can
have its own coordinates, graphics, etc. Processes of a program can be, for instance, a
shot, spacecraft or enemy. When something similar to what is below is input inside a
program:

The statements that are going to execute the "shot type" processes (that is to say, the code
ruling their performance), are specified.

As it can be noticed, more than one shot type process may exist in a program. Then, how
can they be distinguished? Simply by their identifying code .

Every time a new process is created in a game, an identifying code is assigned to this
process. This code is going to be the exclusive reference of the process until it disappears.

Two different processes will never have the same identifying code at the same time.
However, the code that belonged to a process that has already disappeared can be
assigned to a new process (something similar to what happens in relation to an i.d.).

The identifying codes are always whole, positive, odd numbers, like 471, 1937 or 10823.

All the processes have their own identifying code in ID, that is something similar to a
process’ local variable local, with the proviso that it can not be modified.

8.2 Identif ying codes of processes

Note: The operator TYPE can only be used preceding a process name of the program or
the word mouse , to detect collisions with the mouse pointer (collision (TYPE mouse)).

PROCESS shot(...);
BEGIN
 // statements ...
END

Page 152

Moreover, the processes have the identifying code of the process that created them (that
called them) in father . They have the identifying code of the last process they created (the
last one they called) in son . And so on.

What are the identifying codes for?

Normally, all the processes need the identifying code of the other processes in order to
interact with them (to see where they are, to modify them, ...).

For instance, it is not possible to subtract energy from the "enemy type" process, as many
or none of this type of process may exist. It is necessary to have the specific identifying
code of the enemy process from which you want to subtract energy.

A process accesses all its own variables simply by their names, such as x, size or graph .
Thus, if the identifier of a process is known (in son , father or any variable defined by the
user, such as id2), then it is possible to access the variables of that process, as (son.x ,
father.size or id2.graph). That is to say, the syntax to access local variables of another
process is as follows:

These variables can normally be used to consult them or modify them.

It is not at all possible to access PRIVATE variables of another process at any rate . In
order to access a private variable of another process, it is necessary to change its
declaration to the LOCAL section to transform it into a local variable. Then, any process will
be able to access that variable just having the identifying code of the process, as all the
processes will have that variable.

The identifiers have more utilities other than the access to alien local variables, such as the
signal() function, that can send specific signals to a process if its identifying code is known
(for instance, to eliminate the process).

There are also other functions, such as collision() , used to detect collisions with other
processes. When this function detects a collision, it returns the identifying code of the
process with which it is colliding. Once this code is known, it is possible to access the
variables of the process and send them signals.

The get_id() function operates in a similar way to collision() , obtaining the identifying code
of a process. But in this case, no collision with it is required.

All the processes have their own identifying code in ID (reserved word in the language that
is equivalent to the identifying code of the process).

When a process is created (is called), it returns its own identifying code as return value,
unless it has finished with a RETURN(<expression>). That is to say, a process will always
return its identifying code when it finishes (when its END is reached), when it executes the
FRAME or the RETURN statements without expression in brackets.

8.3 Ways to obtain the identif ying code of a process

 <identifying_code>.<name_variable>

Page 153

In the following example, a process (my_process type) is created from the main program,
and its identifier is stored in the id2 variable.

These variables can be equal to 0 if they have not been defined (for instance, son will be
equal to 0 until a process is not created or if this process has disappeared).

The processes’ identifying codes allow us to access their local variables
(<identifier>.<variable>) and, as father , son , etc. are also local variables, it is possible to
make combinations such as son.bigbro to access the identifier of the penultimate process
created (as son is the last one; therefore, its elder brother will be the penultimate one).

Besides creation or direct relationship, there are other ways to obtain identifying codes of
processes, as indicated below:

� The get_id() function to obtain the identifiers of the processes of a specific type
(spacecraft, shot, etc.) existing at a specific moment in the game.

� The collision() function to obtain the identifiers of the processes with which it is

colliding.

When a specific process needs to access from many others, as it is an important process
such as, for instance, the protagonist spacecraft of a game,
then it can be more useful to assign its identifier to a
GLOBAL variable of the program (that can be accessed by
any process at any point). Thus, any process will be able to
interact with it, as it will have its identifier.

In this example, at a specific point the enemy type
processes access the z variable of the spacecraft created
by the main program, using for that purpose its identifier,
that is included in the id_spacecraft global variable.

PROGRAM my_game;
PRIVATE id2;
BEGIN
 id2=my_process();
 // ...
END
PROCESS my_process()
BEGIN
 // ...
END

All the processes have the following local variables
predefined with identifiers of other processes:

father - father, identifier of the process that created it
(the one that made the call).

son - son, identifier of the last process created by it (last
called process).

bigbro - Elder brother, identifier of the last process
created by the father before creating it.

smallbro - Younger brother, identifier of the following
process created by the father after having created it.

PROGRAM my_game;
GLOBAL
 id_spacecraft;
BEGIN

id_spacecraft=spacecraft();
 // ...
END
PROCESS spacecraft()
BEGIN
 // ...
END
PROCESS enemy()
BEGIN
 // ...
 id_spacecraft.z=0;
 // ...
END

Page 154

In order to call a process, put the name of the process, followed by a list including as many
expressions separated by commas as parameters of the process, in brackets. The
brackets are obligatory, even if the process has no call parameters .

A call to a process will always return a value that depends on which one of the following
actions is performed first by the called process.

� If the FRAME statement is executed, then the process will return its identifying code .

� If the process executes the RETURN(<expression>) statement, then the former will

return the result of this expression.

� If the process finishes, either because the END of its BEGIN is reached or because a

RETURN statement is executed with no expression, the process will return the
identifying code that had. But, as the process has finished (killed), it is necessary to
take into account that this identifying code can now be used by any other process
created from now on.

The return value can be ignored, assigned to a variable or used inside an expression.

In this example, the main process my_game makes two
calls to the process my_process , which receives two
parameters in its x and y local variables.

As the process executes the FRAME statement, it will
return its identifying code .

It can be noticed how the value returned in the first call to
the process is ignored (it is not used at all), and how, in
the second call, the identifying code of
my_process(320, 200) is assigned to the private variable
of the main process id2 .

When a call to a process is made, the execution of the
current process is momentarily stopped, and the code of
the called process is executed, until it is returned through
one of the three mentioned cases (until it finishes or
executes a FRAME or RETURN statement).

If the process has finished with a FRAME statement, it will be displayed in the following
frame according to the values established in its local variables (x, y, graph , ...) and, in the
preparation of the following frame, this process will go on running from the FRAME
statement.

8.4 Call to a process

<process name> (<list of parameters>)

PROGRAM my_game;
PRIVATE
 id2;
BEGIN
 my_process(0,0);

id2=my_process(320,200);
 // ...
END
PROCESS my_process(x,y)
BEGIN
 LOOP
 FRAME;
 END
END

Page 155

When a program starts to run there is only one process: the initial process, which starts the
execution of the main code’s statements. But, from this moment, this process can create
new processes that, at the same time can create other processes, destroy them, etc.

In order to clarify the events appearing through a program, we use a simile, treating the
processes as if they were alive beings that are born and killed (when they are created or
destroyed). For that reason, the following terms are established:

This vocabulary may be spread as far as your imagination desires grandfathers ,
grandsons , uncles , etc.

All the processes have direct access to the identifying codes of the processes with which
they have direct relationship.

Occasionally, reference is made to actions performed by "the system ". This process,
called div_main , controls the rest. Therefore, it is in charge of creating the initial process at
the beginning of the execution, of setting the speed execution, the debugger, etc. All the
processes that are orphaned become sons of this process.

The div_main identifier can be obtained with get_id(0). It can be used to send a tree
signal to all the processes, but this process won’t be displayed on screen , even if its x, y,
graph , etc. variables are defined.

Processes are the different elements of a program (objects of the game). They may
experience different states on creating, destroying or receiving specific signals with the
signal() function.

Alive or awaken process
A process is alive when it is running (when it is interpreting the statements located between
its BEGIN and its END).

Dead process
A process is dead when it finishes (either because its END is reached in the execution, a
RETURN is executed or because it receives a signal s_kill or s_kill_tree).

8.5 Hierarchies of processes

8.6 States of a process

Father , name given to the process that has created another one (mother would have
been a more appropriate name).

Son , process created by another one.

Brothers , processes created by the same father.

Orphan , process whose father has dead (as it has been either eliminated or finished).

Page 156

Asleep process
A process may receive the signal s_sleep (or s_sleep_tree), then becoming asleep. In this
state, this process will appear to be dead. But it is not as, at any moment, it may receive a
signal s_wakeup and return to the alive or awake states. It is also possible to kill an asleep
process.

Frozen process
The signal s_freeze (or s_freeze_tree) freezes a process. In the frozen state, the process,
that is still visible, remain blocked. It may be detected by the rest of the processes (for
instance, in collisions), but it is not executed (it stops interpreting its code statements). It will
remain in this state until it receives another signal that changes its state or that kills it.

A frozen process may be controlled (moved) by another process, directly manipulating its
variables.

Notes:
When a signal is sent to a process, aiming at changing its state, this signal will have no
effect before its following display (FRAME) is reached if the process is running. If the
process is not running, then the signal will have an immediate effect.

No signal must be sent to nonexistent processes (to an identifying code that does not
correspond with any process).

This signal will be ignored when the aim is to put a process in the state in which it is already.

In the language, all the angles are specified in degree thousandths. For instance:

If 360 degrees (360000) are added to or subtracted from any angle, an equivalent angle is
obtained. For instance, the angles -90000 and 270000 are equivalent (the angles of -90
degrees and 270 degrees go both downwards)

The constant PI predefined as 180000, 3.1415 radians or, what is the same, 180 degrees ,
can be used as reference. For instance, PI/2 will be equal to 90 degrees (90000).

Some of the functions dealing with angles are the following ones: get_angle() , get_distx() ,
get_disty() , fget_angle() , near_angle() , advance().

All the processes have a predefined local variable called angle which, by default, will be
equal to 0. If its value is modified, the display’s angle of the graphic of the process will be
changed (the graphic will rotate in the indicated degrees, from the original graphic).

8.7 Use of an gles in the lan guage

0 are 0 degrees (to the right)
90000 are 90 degrees (up)
-45000 are -45 degrees (down right diagonal)

Page 157

In general, any expression is valid as a condition. In the language, all the ODD expressions
are interpreted as true and all the EVEN expressions are interpreted as false .

In this example, the x=x+1; statement will always be
executed, as the expression 20*2+1 equals 41, an odd
number.

All the available operators are valid inside a condition. It is
even possible to make assignments inside a condition (the
assignments are operations that return the assigned value
as a result).

All the identifying codes of processes are odd numbers, that is to say, all of them are true .
Therefore, it is possible to implement conditions as the following one (supposing that id2
has been declared as a variable, and shot is a process type of the program).

In the condition id2=get_id(TYPE shot) the result of the get_id() function is assigned to the
id2 variable. If that function has returned an identifying code, it will be an odd number and
the condition will be evaluated as true (if get_id() does not find (more) identifiers of "type
shot " processes, then it will return 0 (which is an even number). The condition will be
interpreted as false , and the WHILE statement will finish.

The previous statements would decrement the size variable of all the type shot processes
contained in the program.

It is important to know the way in which the expressions are evaluated in order to know
where it may be necessary to put brackets indicating the way in which the expression is
intended to be evaluated.

In the language, an expression can contain operators of different levels of priority.

In the evaluation of an expression, the operators of priority 1 (if they exist), will always be
processed first, and then, those of priority 2 , priority 3 and so on.

8.8 About the conditions

8.9 Evaluation of an ex pression

PROGRAM my_game;
BEGIN
 IF (20*2+1)
 x=x+1;
 END
END

WHILE (id2=get_id(TYPE shot))
 id2.size=id2.size-1;
END

Priority 1
() Brackets, beginning and end of a sub-expression.

Priority 2
. Period, operator of access to local data and structures.

Page 158

The operators of priority 3 are known as unary operators. They do not link two operands
(unlike the binary operators such as, for instance, a multiplication), but they just affect the
value of an operator.

Priority 3
NOT Binary and logical negation (!).
OFFSET Offset (&).
POINTER Addressing operator (*, ^ , []).
- Sign negation.
++ Increment operator.
-- Decrement operator.

Priority 4
* Multiplication.
/ Division.
MOD Module (%).

Priority 5
+ Addition.
- Subtraction.

Priority 6
<< Rotation to the right.
>> Rotation to the left.

Priority 7
AND Binary and logical (&, &&).
OR Binary and logical (|, ||).
XOR Exclusive Or (^ , ^^).

Priority 8
== Comparison.
<> Different (!=).
> Bigger.
>= Bigger or equal (=>).
< Less.
<= Less or equal (=<).

Priority 9
= Assignment.
+= Addition-assignment.
-= Subtraction-assignment.
*= Multiplication-assignment.
/= Division-assignment.
%= Module-assignment.
&= AND-assignment.
|= OR-assignment.
^= XOR-assignment.
>>= Rotation to the right-assignment.
<<= Rotation to the left-assignment.

Page 159

Inside the unary operators, those closest to the operand will be executed first. For instance,
in the expression:

NOT -x

The operand x has two unary operators, the negation of sign - and the logical and/or binary
NOT. Among them, the negation of sign will be executed first, as it is closer to the operand.

From priority 4 , all the operators are binary and they will be executed according to their
level of priority. Therefore, when in an expression there is more than one operator of the
same level (for instance, a multiplication and a division, both of priority 4), they will be
processed from left to right. That is to say, in the following expression:

8/2*2

The division will be executed first and then, the multiplication (it is the natural way to
evaluate the expressions mathematically).

The only exception are the operators of priority 9 (assignment operators), that will be
evaluated from right to left (instead of from left to right). That is to say, in the expression:

x=y=0

y=0 will be processed first (y will be put at 0) and then, x=y (x will also be put at 0, as y will
now be equal to 0).

As it can be noticed, the assignments work like an operator. After the assignment, they
return the value they have assigned as a result of the operation.

Page 160

Page 161

 !!����2�

Page 162

This first appendix shows a brief summary of the syntax of a program in the DIV language
which could help to clarify the general structure of a program.

The syntax is shown informally , highlighting the symbols and reserved words which are
essential to the language. The dots indicate that the previous declaration can be repeated
any number of times. Many of the parts of the programs shown here are optional .

An extended and detailed syntax with examples can be found in the help hypertext of DIV
Games Studio (using option help... in the main menu).

 ������-� ���	$$��#��/������#���-��/� �!��*��$

<Program>

PROGRAM <name> ;
CONST
 <name> = <numerical value> ;
 ...
GLOBAL
 <declaration of datum> ;
 ...
LOCAL
 <declaration of datum> ;
 ...
PRIVATE
 <declaration of datum> ;
 ...
BEGIN
 <statement> ;
 ...
END

<Declaration of process>
...

<Declaration of datum>

There are three kinds of declaration of datum:

<Declaration of a variable>
<Declaration of a table>
<Declaration of a structure>

<Declaration of a variable>

<name> = <numerical value>

Page 163

<Declaration of a table>

<name> [<numerical value>] = <list of numerical values >

<Declaration of a structure>

STRUCT <name> [<numerical value>]
 <declaration of datum> ;
 ...
END = <list of numerical values >

<Declaration of process >

PROCESS <name> (<list of parameters>)
PRIVATE
 <declaration of datum> ;
 ...
BEGIN
 <statement> ;
 ...
END

<Statement>

We find the following kinds of statements:

<Statement of assignment>
<Statement IF>
<Statement SWITCH>
<Statement LOOP>
<Statement FROM>
<Statement REPEAT>
<Statement WHILE>
<Statement FOR>
<Statement BREAK>
<Statement CONTINUE>
<Statement RETURN>
<Statement FRAME>
<Statement CLONE>
<Statement DEBUG>
<Call to a function >
<Call to a process >

<Statement of assignment>

<datum> = <numerical expression>

<Statement IF>

IF (<condition>)
 <statement> ;
 ...
END

Page 164

(or otherwise)

IF (<condition>)
 <statement> ;
 ...
ELSE
 <statement> ;
 ...
END

<Statement SWITCH>

SWITCH (<numerical expression>)
 CASE <range of values> :
 <statement> ;
 ...
 END
 ...
END

(or otherwise)

SWITCH (<numerical expression>)
 CASE <range of values> :
 <statement> ;
 ...
 END
 ...
 DEFAULT :
 <statement> ;
 ...
 END
END

<Statement WHILE>

WHILE (<condition>)
 <statement> ;
 ...
END

<Statement REPEAT>

REPEAT
 <statement> ;
 ...
UNTIL (<condition>)

<Statement LOOP>

LOOP
 <statement> ;
 ...
END

Page 165

<Statement FROM>

FROM <variable> = <numerical value> TO <numerical value> ;
 <statement> ;
 ...
END

(or otherwise)

FROM <variable> = <numerical value> TO <numerical value> STEP <numerical
value> ;
 <statement> ;
 ...
END

<Statement FOR>

FOR (<initialisation> ; <condition> ; <increment>)
 <statement> ;
 ...
END

<Statement BREAK>

BREAK

<Statement CONTINUE>

CONTINUE

<Statement RETURN>

RETURN

(or otherwise)

RETURN(<numerical expression>)

<Statement FRAME>

FRAME

(or otherwise)

FRAME(<numerical expression>)

<Statement CLONE>

CLONE
 <statement> ;
 ...
END

Page 166

<Statement DEBUG>

DEBUG

<Call to a process >

<name> (<list of parameters>)

<Call to a function >

<name> (<list of parameters>)

Page 167

 !!����2�+

+

Page 168

The functions available in DIV Games Studio are described in this appendix. It is also
possible to consult them, in an interactive way, in the help hypertext where, moreover, a
sample program for every one of these functions is shown and explained.

Returns:
The absolute value of the expression.

Description:
Calculates the absolute value of the expression passed as a parameter. That is to say, if the
result of the expression is negative, it will change its sign; if it is positive, it will not change it.

Description:
Advances the process in its angle (the one shown by the angle local variable) as many
points as the expression (distance) passed as a parameter shows.

The distance can also be a negative number. In that case, the graphic of the process will
move forward (its coordinates x and y) in the direction opposite to its angle.

Notes:
Keep in mind that the angle is specified in thousandths of a degree.

This function is always equivalent to the two following statements:

 x+=get_distx(angle, <distance>);
 y+=get_disty(angle, <distance>);

That is to say, this function only modifies the coordinates of the process. It is possible to use
the two previous statements when the aim is to advance the process in an angle different
from the one shown by its angle variable. It will be useful when the aim is to make the
graphic of the process advance in a direction without rotating.

For instance, to make the process advance 8 points in a direction (that could be obtained in
a private variable like angle2) but rotated to another direction, (the one showed in angle),
the following statements would be used:

x+=get_distx(angle2,8);
y+=get_disty(angle2,8);

 ������-�+���	���������/�����3��*	�*�

abs(<expression>)

advance (<distance>)

Page 169

Description:
To use this function it is essential to have a 16 Bit sound card installed.

The use of this function only makes sense after using the sound() function, used to emit
sounds.

Change_sound() modifies a sound that is being played through one of the channels ,
adjusting its volume and its frequency once again.

The channel is the channel code returned by the sound() function when it is called. The
16 channels may even sound at the same time, with the same sound or with different
sounds. Therefore, every time that a sound is emitted it will possibly be emitted through a
different channel.

Every channel has its volume and frequency levels established at all times.

The volume is a value between 0 (minimum volume) and 512 (maximum volume) that
determines the power with which the sound of that channel will be heard.

The frequency is a value that affects the speed at which the sound is heard through the
channel. That is to say, it controls the bass and treble of the sound. This value ranges
between 0 (bass) and 512 (treble).

Description:
Clears the screen background, that is to say, the graphics that would be drawn on it with the
put() , xput() , put_pixel() and put_screen() functions.

Returns:
The identifying code of a process or 0.

Description:
This is the language’s function used to detect collisions between graphics.

It verifies if the current process (executed by this function) collides with one of the type
shown as a parameter. That is to say, it verifies if the graphics of both processes are
touching, at least partially.

In case of collision, it will return the identifying code of the process with which the current
process is colliding. Otherwise, the function will always return 0.

change_sound(<channel>, <volume>, <frequency>)

clear_screen()

collision(<process type>)

Page 170

If the current process collides with several processes of the specified type , the collision()
function will return the rest of the identifiers in the successive calls made to it.

To obtain in this way all the identifying codes of the processes that collide with the current
one, the FRAME statement must not be used between two consecutive calls to the
collision() statement. When a process executes a FRAME statement, this function will
return all the identifying codes of colliding processes from the first one.

Something similar happens if a call to the function is executed, specifying a different type of
process. If, after that, collisions with the previous type are detected, this function will also
return all the codes from the first one.

If the aim is to obtain the identifying codes of the processes of a specific type , even if
there is no collision with them, it is necessary to call the get_id() function.

But if the aim is to check the proximity between two processes whose graphics are not
necessarily colliding, then the get_dist() function will have to be used.

Notes:
When the mouse pointer is being displayed in the program (assigning the code of the
corresponding graphic in the mouse structure), it is possible to see if the pointer collides
with the current process using this function, for instance, in the following way:

 IF (collision(TYPE mouse))
 // The process collides with the mouse pointer·
 END

On detecting the collision with the mouse pointer, it will not be done with the whole
graphic used as a pointer, but only with its main control point (number 0), usually called
mouse hotspot .

Description:
Changes the colour map of the <graphic> of the indicated <file> .

The <OFFSET new_palette> is the address, inside the computer’s memory, of a 256 value
table where the new order of the graphic’s colours will be indicated.

Important:

This function is useful to detect collisions between graphics of the screen or of a scroll
window.

It is not possible to use this function to detect collisions with processes that have no
graphic (a valid code assigned to its graph variable) or between graphics of a mode-7
window (with its ctype variable assigned to the value c_m7).

Therefore, it is essential that both, the current process and the process of the specified
type, have a graphic defined.

convert_palette(<file>, <graphic>, <OFFSET new_palette>)

Page 171

If the table with the new palette is like the following one:

 new_palette[255]=0, 1, 2, 3, 4, ... , 254, 255;

then the graphic would not be transformed. If, for instance, in position 3 of the previous table
(new_palette[3]) we put a 16 (instead of a 3), by calling this function with the OFFSET of this
table, colour 3 would be replaced by colour 16 in the graphic.

The graphics loaded with the load_map() function will be used as if they belonged to the
first file (the code 0 file).

If a process wanted to replace the colours of its graphic, it should be first necessary to
create a table with the new colours order and then, call the function with the parameters:

convert_palette(file, graph, <OFFSET new_palette>)

Using the file and graph local variables of the process itself as parameters of the
convert_palette() function.

Description:
Defines a new display region inside the screen (something similar to a window). The regions
are rectangular zones of the screen inside which some specific processes, scroll or mode-7
windows will be displayed.

The region number must range between 1 and 31. It is possible to define up to 31 different
screen regions that, later can be assigned to different processes (establishing their region
local variable at the new number) as their display window. They can also be used as a
framework for a scroll or mode-7 window, indicating it in the corresponding parameter of the
start_scroll() or start_mode7() functions.

Region number 0 must not be redefined, as it will always be the entire screen, a window at
the (0, 0) coordinates, of the same width and height of the screen. This is the region in
which all the processes will be displayed by default, as its region local variable is always
equivalent to 0 by default.

Description:
Definitively deletes a text from the screen if the text identifier is specified as a parameter.
This identifier is a numeric code returned by the write() and write_int() functions when they
are asked to write a text.

If all_text is specified as a parameter, all the texts will be deleted from the screen.

define_region(<number of region>, <x>, <y>, <width>, <height>)

delete_text(<text identifier>)

Page 172

Description:
Finishes a FLI/FLC animation displayed on the screen and frees up the computer’s memory
that it was occupying.

Notes:
The FLI/FLC animations start with the start_fli() function.

Only one animation can be loaded in the computer’s memory.

It is not necessary to wait for the animation to finish in order to unload it from the memory.

Description:
The game finishes by killing all the processes immediately and going back to the operating
system (or to the DIV environment) with a message and a numeric code (the one indicated
in the expression of the second parameter).

The message is a text in inverted commas that will appear as a farewell message for the
player when the game is over.

The return code is valid to use programs external to DIV Games Studio (such as BAT
batch processing files), to determine the action that must be performed after the game has
been executed.

When the exit() function is used, it is not necessary to have previously unloaded any
resource, such as files, maps, sounds, etc., since the system automatically finishes all the
resources.

Note:
All the programs will stop running if the ALT+X key combination is pressed at any moment.
This operation is equivalent to forcing the execution of the exit() function, but without
displaying any message and with the return code 0.

Description:
Starts a fading of the game’s palette colours until the display percentages (from 0% to
200%) of the red , green and blue components, shown as parameters, are obtained.

The last parameter indicates the speed at which the colours’ fading will be performed. It is
normally defined by a number, from 1 (very slowly) to 10 (very quickly).

If a number bigger than 64 or equal to it is indicated as speed, the fading will be performed
instantaneously.

end_fli()

exit(<message>, <return code>)

fade(<% red>,<% green>,<% blue>,<speed>)

Page 173

The fading will gradually be performed in the successive displays of the game (in the
following frames).

If the three components are set at 0, a fading to black is carried out. If they are set at 200, a
fading to white will be carried out. Finally, the original colours of the game palette will be
recovered if the components are set at 100.

A value less than 100 in a component will fade its colour, whereas a value higher than 100
will saturate the colour.

Keep in mind that the fading is not carried out by executing the fade() function, but it is
carried out in the following FRAME statements. While a fading is carried out, the predefined
fading global variable will be equivalent to true (an odd number that, in this case, will be 1)
and when the fading is over (finally obtaining the specified colour display values), this
variable will become equivalent to false (an even number, number 0).

Description:
Carries out a fading of the screen’s colours to black. The game stops until the screen
becomes completely black. Carrying out a fading to black is called to fade the screen off .

The fade_on() function is used to fade the screen on again (undo the fading to black).

Note:
The fade() function can fulfill the same function without stopping the program or at different
speeds. At the same time, it can produce other more advanced palette’s effects.

Description:
Carries out a screen colours’ fading to its natural situation. In the successive displays of the
game (on reaching the FRAME statement) the colours will gradually be appearing until they
are perfectly seen. This action is called to fade the screen on .

The fade_off() function is used to fade the screen off (to carry out a fading to black).

Notes:
The fade() function can fulfill the same function at different speeds. At the same time, it can
produce other more advanced palette’s effects.

All the games automatically carry out a fade_on() at the beginning of the execution.

fade_off()

fade_on()

Page 174

Returns:
The angle between two points.

Description:
Returns the angle existing from point 0 (x0, y0) to point 1 (x1, y1).

Keep in mind that the angle is specified in degree thousandths. The function always returns
a value between -180000 and 180000 (an angle between -180 and 180 degrees).

Any valid numeric expression can be defined as coordinates of both points (x0, y0, x1, y1).

Notes:
The get_angle() function is used to obtain the angle from a process to another one ,
instead of between two points.

The fget_dist() function is used to obtain the distance between two points , instead of the
angle.

Returns:
The distance between two points.

Description:
Returns the distance existing from point 0 (x0,y0) to point 1 (x1,y1).

Any valid numeric expression can be specified as coordinates of both points (x0, y0, x1,
y1).

Notes:
The get_dist() function is used to obtain the distance of a process to another one ,
instead of between two points.

The fget_angle() function is used to obtain the angle between two points , instead of the
distance.

fget_angle(<x0>, <y0>, <x1>, <y1>)

fget_dist (<x0>, <y0>, <x1>, <y1>)

This function may be used to detect collisions between processes due to their proximity,
even if the collision() function is normally used to this purpose. The last function detects
when two processes have their graphics overlapped.

For instance, with the processes displayed inside a mode-7 window (see start_mode7()),
the collision() function can not be used, being necessary to obtain the distance between
the processes (normally with get_dist()) to verify if they collide with each other (if their
distance is less than a distance already determined).

Page 175

Returns:
True if the animation goes on and false if it has finished.

Description:
Shows the following frame of a FLI/FLC animation started with the start_fli() function. This
function returns 0 if the animation has already finished.

During the program’s execution, it will be possible to execute but one FLI/FLC animation at
the same time. That is to say, it will not be possible to execute two animations
simultaneously.

The animation frame will only be displayed in the following frame of the game (when the
FRAME statement is reached). Therefore, if a loop is made and inside it the frame_fli()
function (but not the FRAME statement) is called, the animation will not be displayed on
the screen.

Returns:
The angle towards another process.

Description:
Returns the angle from the current process (the one that called this function) to the process
whose identifying code is passed to it as a parameter.

Keep in mind that the angle is specified in degree thousandths. The function always returns
a value between -180000 and 180000 (an angle between -180 and 180 degrees).

Notes:
The fget_angle() function is used to obtain the angle between two points , instead of
between two processes. If the identifying code of the process is stored, for instance, in a
variable called id2 , then the call to the function:

get_angle(id2)

would be equivalent to:

fget_angle(x,y,id2.x,id2.y)

Obtaining the angle from the (x, y) coordinates of the current process, to the (x, y)
coordinates of the process whose identifying code is id2 .

The get_dist() function is used to obtain the distance to another process , instead of the
angle.

frame_fli()

get_angle(<identifying code>)

Page 176

Returns:
The distance to another process.

Description:
It returns the distance between the current process (the one that called this function) to the
process whose identifying code is passed to it as a parameter.

If the process has defined its local variable resolution , it is important that the process to
which the aim is to obtain the distance has it defined at the same value. That is to say, if
both processes use the coordinates in hundreds instead of units (with resolution =100), the
distance between both will also be obtained in hundreds. But if the value of that variable
differs in both processes, the result of the get_dist() function will make no sense.

Notes:
The fget_dist() function is used to obtain the distance between two points , instead of
between two processes. If the identifying code of the process is stored, for instance, in a
variable called id2 , then the call to the function:

get_dist(id2)

Would be equivalent to:

fget_dist(x,y,id2.x,id2.y)

Obtaining the distance from the (x, y) coordinates of the current process, to the (x, y)
coordinates of the process whose identifying code is id2 .

The get_angle() function is used to obtain the angle to another process , instead of the
distance.

get_dist(<identifying code>)

This function may be used to detect collisions between processes due to their proximity,
even if the collision() function is normally used to this purpose. The last function detects
when two processes have their graphics overlapped.

For instance, with the processes displayed inside a mode-7 window (see start_mode7())
the collision() function can not be used, being necessary to obtain the distance between
the processes to verify if they collide with each other (if their distance is less than the
distance already determined).

Page 177

Returns:
The horizontal offset of the vector (angle, distance).

Description:
Returns the horizontal distance (in the axis of the x coordinate) from the angle and
distance (over this angle) passed as parameters. That is to say, it returns the distance
covered in horizontal by the vector made by the angle and length (distance or vector
module) indicated. Keep in mind that the angle is specified in degree thousandths and any
valid numeric expression may specify the distance.

The function used to calculate the vertical distance, instead of the horizontal one, is
get_disty() .

Notes:

If the aim is to advance the coordinates of the process a distance in a specific angle, the
following statements may be used:

x+=get_distx(<angle>,<distance>);
y+=get_disty(<angle>,<distance>);

If the angle in which the aim is to move the process is the one contained in its angle local
variable, then this operation could be performed with the advance() function in the following
way:

advance(<distance>);

The get_distx() function is equivalent to calculating the cosine of the angle and multiplying
it by the distance .

Returns:
The vertical offset of the vector (angle, distance).

Description:
Returns the vertical distance (axis of the y coordinate) from the angle and distance (over
this angle) passed as parameters. That is to say, it returns the distance covered in vertical
by the vector made by the angle and length (distance) indicated.

Keep in mind that the angle is specified in degree thousandths. Any valid numeric
expression can specify the distance.

The function used to calculate the horizontal distance, instead of the vertical one, is
get_distx() .

get_distx(<angle>, <distance>)

get_dist y(<angle>, <distance>)

Page 178

Notes:
If the aim is to advance the coordinates of the process a distance in a specific angle, the
following statements may be used:

x+=get_distx(<angle>,<distance>);
y+=get_disty(<angle>,<distance>);

If the angle in which you want to move the process is the one contained in its angle local
variable, then this operation could be performed with the advance() function in the following
way:

advance(<distance>);

Returns:
Either the identifying code of a process or 0.

Description:
Verifies if there are active processes of the specified type . If there are, then this function will
return the identifying code of one of them. If there are not, it will return 0.

If there are several processes of the specified type , the get_id() function will return the rest
of the identifiers in the successive calls made to it.

Once all the identifying codes have been returned, the function will return 0, until a
FRAME statement is executed again. From this moment, this function will return all the
identifying codes of the processes of the specified type again. To obtain all the identifying
codes of the processes in this way, the FRAME statement will not be used between two
consecutive calls to the get_id() statement. In case that a FRAME statement is executed,
this function will return all the identifying codes of processes again, from the first one.

Something similar happens if a call to the function is executed, specifying a different type of
process . If, after this, identifiers of the previous type of process are asked again, this
function will also return them from the first one.

Note:
The collision() function is used to obtain the identifying codes of processes of a specific
type that, moreover, collide with the current process.

The get_disty() function is equivalent to calculating the sine of the angle and multiplying
it by the distance , changing this result of sign, because the screen Y axis advances
downwards (unlike the sine function).

get_id(<process type>)

Page 179

Returns:
True (1) if the button is pressed, False (0) if it is not.

Description:
This function requires the joystick number button (from 0 to 3) as a parameter, and returns
true (an odd numerical value) if it is pressed at that moment.

If the button is not pressed, the function returns false (an even numeric value).

Some joysticks have only 2 buttons. In this case, they will be number 0 and 1 buttons. In
computers with two connected joysticks, the second joystick will have buttons number 2 and
3.

Note:
There are other ways to use the joystick. The easiest one is to use the joy structure , since
in it there are four records that continuously show the state of the joystick buttons.

Returns:
The position of the joystick axis.

Description:
This function returns the coordinate in which the axis specified (with a number from 0 to 3)
of the analog joystick is placed.

0 axis - Main X axis.
1 axis - Main Y axis.
2 axis - Secondary X axis.
3 axis - Secondary Y axis.

The joystick coordinate may vary, depending on the type of joystick and on the computer in
which it is executed. Anyhow, it is a number that usually ranges from 4 to 200,
approximately.

The main and secondary axes may be integrated in a single joystick, on some occasions
(flight commands with pedals , etc.). In computers having two connected joysticks, joystick 1
will be the main axis and joystick 2 will be the secondary one.

Note:
There are other ways to use the joystick. The easiest one is to use the joy structure, when
an analog reading of the joystick (its coordinates) is not required. That is to say, when it is
enough to know if the joystick is at the center, to the right, down, etc.

get_joy_button(<number of button>)

get_joy_position (<number of axis>)

Page 180

Returns:
The colour of the pixel (0..255).

Description:
Returns the colour that the background screen pixel placed in the coordinates indicated as
parameters has.

The returned number is the colour’s order inside the colours palette active in the program. It
ranges from 0 to 255, as the palettes have 256 colours.

The pixel is exclusively taken from the background screen picture, without having into
account the graphics of the processes, texts, scroll regions, etc. That is to say, only the
colours put by the put() , xput() , put_pixel() and put_screen() functions will be read.

Returns:
The position of the control point (in the variables whose offset is indicated as the last two
parameters).

Description:
This function returns the control point , whose number is indicated as third parameter, to
the position where it was placed in a graphic (of the indicated file).

A control point is a point that can be defined in the graphic editor (painting tool), in the
option designed for this function.

The function needs the address (that is obtained with the offset operator) in the computer’s
memory of two variables in which it will return the x and y position of the control point.

The graphics loaded with the load_map() function will be used as if they belonged to the
first file (the file with the 0 code).

Note:
This function returns the exact coordinates in which that control point was placed inside the
graphic, without considering how this graphic is now (scaled, rotated, etc.). The
get_real_point() function must be used to obtain the position of a control point in a scaled,
rotated... graphic and referred to the screen coordinates (and not to those of the original
graphic).

That is to say, this last function returns the position where a control point is at a specific
moment, and get_point() returns the place where this point was originally located.

get_pixel(<x>, <y>)

get_point(<file>, <graphic>, <number>, <OFFSET x>, <OFFSET y>)

Page 181

Returns:
The current coordinates of the control point (in the variables whose offset is indicated as
the last two parameters).

Description:
This function returns where, at that moment, a control point of the current process’ graphic
is in the system of coordinates used by the process itself (see ctype local variable),
evaluating the original location of the point, the current coordinates of the process, their
size, angle, etc.

A control point is a point that can be defined in the graphic editor (painting tool), in the
option designed for this function.

The function needs the address (that is obtained with the offset operator) in the computer’s
memory of two variables in which it will return the x and y position of the control point.

The graphics loaded with the load_map() function will be used as if they belonged to the
first file (the file with the 0 code).

Notes:
This function is normally used to have some important points of a graphic located. For
instance, if we have defined a process whose graphic is a man with a gun that can be
scaled, rotated or that can perform different animations, we could define a control point in
the barrel gun’s point to know at any time from where the bullets must leave when shooting.

If the original graphic was inside a scroll region (see start_scroll()) then the returned
coordinates will also refer to that scroll region.

Returns:
The required information about the graphic.

Description:
Returns the required information about a graphic of a file .

Information:
g_wide - The function will return the original width of this graphic if g_wide is put as third
parameter.

g_height - The function will return the original height of the graphic.

g_x_center - The function will return the x coordinate of the graphic’s center.

get_real_point(<number>, <OFFSET x>, <OFFSET y>)

The get_point() function returns the position where a control point was originally placed
in the graphic, unlike the get_real_point() function, that returns its current position.

graphic_info(<file>, <graphic>, <information>)

Page 182

g_y_center - The function will return the y coordinate of the graphic’s center.

The graphics loaded with the load_map() function will be used as if they belonged to the
first file (the file with the code 0).

Returns:
True (1) if the CD is playing, or false (0) if it is not.

Description:
This function is used to determine whether the CD is playing a song.

It returns True (an odd number) if the CD is playing a song. Otherwise, it returns False (an
even number).

Its most widespread use is to play a song indefinitely.

Note:
The volume of cd-audio reproduction may be controlled with the setup structure and the
set_volume() function.

Returns:
True (1) if the key is pressed and false (0) if it is not.

Description:
Returns true (an odd number) if the key, indicated as parameter, is pressed at that moment.
Otherwise, it returns false (an even number).

The input parameter will normally be the name of the key with the _ (underlining) symbol
ahead. For instance, to read the [A] key, the function must be called key(_a) .

Access the keyboards codes in appendix C.6 to see the whole list of the keyboard codes
that may be used as parameter of the key() function.

Notes:
There are three predefined global variables that can also be used to control the keyboard,
and they are the following ones:

scan_code - Code of the latest key that has been pressed. This code is a numeric value
that directly corresponds with the constants of keyboard codes , used as parameters of the
key() function.

ascii - ASCII code of the latest pressed key.

is_playing_cd()

key(<keyboard code>)

Page 183

shift_status - variable that shows a number depending on the special or lock keys (shift,
alt, control, ...) pressed at that moment.

Description:
Sends a s_kill signal to all the processes, except the one executed by this function.
Therefore, all the processes, except the current one, will be eliminated.

This function is normally used from the main process, when a game is over, to delete all the
processes (shots, enemies...) that remain active, and to recover the control of the program.

A call to let_me_alone() could always be replaced by a series of calls to the signal()
function with the s_kill signal. For that, it would be necessary to know either the types of
processes intended to be deleted or their identifying codes .

Notes:
To check the active processes of a program at a specific moment, you must access the
debugger by pressing the F12 key.

The exit() function is also used to immediately finish a program, returning to the system.

Description:
Loads a data block from an archive on the disk to the program’s memory.

For that, the function requires the archive name and the offset, inside the computer’s
memory, of the variable, table or structure stored on the disk (the datum offset may be
obtained with the OFFSET operator).

The offset of the same datum specified when the archive was stored with the save()
function must be specified.

The archive names may be given by specifying a path, which must be the same as that
used with the save() function to store the archive. Nevertheless, it is not necessary to
specify a path. It is important that the archive intended to be loaded has been previously
created, as an error will occur if the aim is to load a nonexistent archive (even if this can be
ignored, continuing the program’s execution).

let_me_alone()

load(<archive name>, <OFFSET datum>)

Page 184

Returns:
The loaded font code .

Description:
Loads an archive with a new characters font (*.FNT) of the disk (a "font" with a new set of
graphic characters).

The function returns the font code that can be used by the write() and write_int() functions
to write a text.

The archives’ path can be specified with the font. Nevertheless, it won’t be necessary if the
archive with the letter font has been generated in the directory by default (\FNT).

The archive with the new font has to be created with the game’s colour palette to be
displayed correctly. Otherwise, the colours will appear changed.

Returns:
Returns the loaded file code .

Description:
Loads an archive with a (*.FPG) file. A file means a graphics library (or collection).

An FPG archive with a graphics library may contain from no graphic to 999 graphics. Every
graphic included in the library will have a numeric code, the graphic code , a number that
ranges from 1 to 999, and that is used to identify the graphic inside the file.

It is possible to load as many graphics’ files as necessary, providing there is available
memory (this function has to be called several times to load several files).

The function returns the file code , that can be used by many functions that require a
graphic. For that, it is necessary to indicate to them the file code in which the graphic is and
the graphic code inside the file.

The archives’ path can be specified with the graphics file. Nevertheless, it won’t be
necessary if the file is in the directory by default (\FPG).

Notes:
The unload_fpg() function allows us to free up the computer’s memory occupied by the
graphics’ file when it is not going to be used any longer. For that, it also requires the file
code , in order to know which file we want to unload from the memory.

It is not necessary to unload the file from the memory before finishing the program,
since the system will do it automatically.

load_fnt(<archive name>)

load_fpg(<archive name>)

Page 185

Returns:
The loaded graphic code .

Description:
Loads a MAP archive with a graphic in the computer’s memory . The function requires the
archive name as a parameter, in inverted commas.

The graphic code is returned as return value, which is a numeric value that must be
specified to use the graphic, in the graph variable or, in general, in all the functions
requiring a graphic code among their parameters.

It is possible to load as many graphics as necessary. Every time one is loaded, the function
will return the corresponding code (the first graphic loaded will have the code 1000, the
following one the code 1001, etc.)

It is possible to specify the path to the archive with the graphics’ file. Nevertheless, if the file
is in the directory by default (\MAP), it won’t be necessary.

Important:
When the file code to which that graphic belongs is required inside a function, the code 0
(which is the code of the first file FPG that is loaded in the program) must be indicated.

When different graphics have been loaded, keep in mind that if they have different palettes,
every one of them must previously be activated with the load_pal() function, indicating the
name of the file (MAP) as a parameter, before using the graphic.

Graphics created with different palettes can not simultaneously be used.

Notes:
The unload_map() function allows us to free up the computer’s memory used by the
graphic when it is not going to be used for a specific time. For that purpose, it also requires
the graphic code to know which is the graphic to be unloaded from the memory.

It is not necessary to unload the graphic from the memory before finishing the
program, as the system will do it automatically.

To load several graphics all at once in a program, they must be included inside a graphics
file (FPG) and loaded with the load_fpg() function.

Description:
Loads a colour palette of the disk (from a PAL, FPG, MAP or FNT archive) defining the 256
colours displayed on the screen.

From that moment, the game will be seen with the colours set indicated by that palette.

load_map(<archive name>)

load_pal(<archive name>)

Page 186

If, at the moment of loading the palette, the program already had a different one assigned,
then a fading of the screen colours to black will be carried out. Then, the new colour palette
will gradually appear in the following frames of the game.

The archive path may be specified with the palette. Nevertheless, it will not be necessary if
the file is, by default, in the directory (that, depending on the type of archive, will be: \PAL,
\FPG, \MAP or \FNT).

The program will automatically read the palette of the first of these types of archives loaded
in the program, even if the load_pal() function is not used. Then, this function will be used
when the program uses several different palettes to change from one to another.

Note:
A palette can not be unloaded from the computer’s memory, since it does not occupy any
space in the memory.

Returns:
The loaded sound code .

Description:
Loads a sound effect from a PCM archive of the disk. The archive name must be replaced
by the sound effect as a first parameter. As a second parameter, the <cyclic> must be
replaced by 1 if the sound must indefinitely be repeated, or 0 if it must be played only once
(when it is required with the sound() function).

The function returns the sound code that must be used by the sound() function to play that
sound through a channel.

The archive path may be specified with the sound. Nevertheless, it will not be necessary if
the sound is in the directory by default (\PCM).

Notes:
The unload_pcm() function allows us to free up the computer’s memory occupied by the
sound when it is not going to be used any longer. For that, it also requires the sound code
in order to know which sound we want to unload from the memory.

It is not necessary to unload the sound from the memory before finishing the
program, since the system will do it automatically.

Description:
The map_block_copy() function allows us to transfer a rectangular block from a graphic to
another one.

load_pcm(<archive name>, <cyclic>)

map_block_copy (<file>, <destination graphic>, <destination x>, <destination y>,
<origin graphic>, <x>, <y>, <width>, <height>)

Page 187

The graphic from which the rectangular region is taken is called origin graphic and the
destination graphic is the one in which this block will be copied. That is to say, this function
allows us to copy a part of a graphic (origin) to another one (destination). The parameters
are the following ones, in order:

<file> - Both graphics must come from the same graphics file. The file code must be
specified as first parameter (see load_fpg()) . The graphics loaded with the load_map()
function will be used as if they belonged to the first file (the file with the code 0).

<destination graphic> - code of the graphic in which the block is going to be put.

<x destination>, <y destination> - (x, y) coordinates at which the aim is to put the block
inside the destination graphic.

<origin graphic> - code of the graphic from which the block is going to be taken.

<x>, <y> - starting coordinates of the block inside the origin graphic.

<width>, <height> - dimensions of the block that is going to be transferred.

This function will modify the indicated graphic, but only its copy that has been loaded in the
computer’s memory. The original graphic, that is stored in the FPG or MAP archives of the
disk, will remain unchangeable . For that reason, if at a specific moment of the game the
aim is to recover the original state of the graphic, it is necessary to unload it from the
memory (with the unload_fpg() or unload_map() functions) and then, load it again.

Note:
When a graphic is put inside another one that is being used as a scroll region’s background,
it will not automatically appear on screen unless the refresh_scroll() function is used.

Returns:
The colour of the pixel (0..255).

Description:
Allows us to obtain the colour of a graphic’s specific pixel, as a return value of the function.
For that purpose, it requires the <file code> in which the graphic is stored, the <graphic
code> inside the file and the (x, y) coordinates of the graphic’s pixel whose colour intended
to be obtained.

The graphics loaded with the load_map() function will be used as if they belonged to the
first file (the file with the code 0).

Notes:
This function is normally used to detect zones inside the graphics. This technique is called
hardness maps and it allows us to use two different graphics, one with the picture and the
second with the zones to detect, painted in different colours.

For instance, in a game with spacecraft, the zones that take energy away from the
spacecraft when passing over it with a specific colour (for instance, colour 32) could be

map_get_pixel(<file>, <graphic>, <x>, <y>)

Page 188

painted in this hardness map . Then, the colour would be obtained from the hardness map
over which the spacecraft is and, if it is 32, energy would be taken away from it.

That is to say, there would be two different pictures: one of them visible, with colours (the
background picture over which the spacecraft moves in the game, and the other, the
hardness map that would only be used to obtain colours from it with the
map_get_pixel() function, identifying so the zone of the original picture over which the
spacecraft is.

Description:
Puts a graphic inside another one. The graphic that is going to be copied is called origin
graphic and the destination graphic is that inside which the origin will be copied. That is to
say, this function allows us to copy a graphic (origin) inside another one (destination).

Both graphics must be in the same file. The parameters are the following ones, in order:

<file> - file code with the graphics library that contains both graphics. The graphics loaded
with the load_map() function will be used as if they belonged to the first file (the file with the
code 0).

<destination graphic> - code of the graphic inside which the other one is going to be put.

<origin graphic> - code of the graphic that is going to be copied in the destination.

<x>, <y> - coordinates inside the destination graphic where the aim is to put the origin
graphic. The center (or control point number 0) of the origin graphic will be located in these
coordinates.

This function will modify the indicated graphic, but only its copy that has been loaded in the
computer’s memory. The original graphic, that is stored in the FPG or MAP archives of the
disk, will remain unchangeable . For that reason, if at a specific moment of the game the
aim is to recover the original state of the graphic, it is necessary to unload it from the
memory (with the unload_fpg() or unload_map() functions) and then, load it again.

Notes:
The map_xput() function is a version a little more complex than the map_put() function, but
with much more utilities. Thus, the latter allows us, moreover, to put rotated, scaled, mirror
and transparent graphics.

The map_block_copy() function must be used to put a part of a graphic (instead of the full
graphic) inside another one.

When the map_put() function (or any other similar) is used to modify a graphic that is being
used as background of a scroll window, it is possible that the graphic you have put does not
immediately appear on screen. To solve this problem, you must use the refresh_scroll()
function.

map_put(<file>, <destination graphic>, <origin graphic>, <x>, <y>)

Page 189

Description:
Allows us to modify the colour of a specific pixel of a graphic. For that, the <file code> where
the graphic is stored, the <graphic’s code> inside the file and the (x, y) coordinates of the
pixel whose <colour> is intended to set are required.

The graphics loaded with the load_map() function will be used as if they belonged to the
first file (the file with the code 0).

This function will modify the indicated graphic, but only its copy that has been loaded in the
computer’s memory. The original graphic, that is stored in the FPG or MAP archives of the
disk, will remain unchangeable . For that reason, if at a specific moment of the game the
aim is to recover the original state of the graphic, it will be necessary to unload it from the
memory (with the unload_fpg() or unload_map() functions) and then, load it again.

Notes:
The map_put() or map_xput() functions may be used to put a full graphic inside another
one (and not only at one pixel). The map_block_copy() function may be used to put just a
part of a graphic inside another one.

When the map_put_pixel() function is used to put a pixel in a graphic that is being used as
background of a scroll window, it is possible that this pixel does not immediately appear on
screen. To solve this problem, you must use the refresh_scroll() function.

Description:
Extended version of the map_put() function.

Puts a graphic inside another one. The graphic that is going to be copied is called origin
graphic and the destination graphic is that inside which the origin will be copied. That is to
say, this function allows us to copy a graphic (origin) inside another one (destination).

Both graphics must be in the same file. The parameters are the following ones, in order:

<file> - file code with the graphics library that contains both graphics. The graphics loaded
with the load_map() function will be used as if they belonged to the first file (the file with the
code 0).

<destination graphic> - code of the graphic inside which the other one is going to be put.

<origin graphic> - code of the graphic that is going to be copied in the destination.

<x>, <y> - coordinates inside the destination graphic where the aim is to put the origin
graphic. The origin graphic is going to be copied at these coordinates, from its upper left
corner.

map_put_pixel(<file>, <graphic>, <x>, <y>, <colour>)

map_xput(<file>, <destination graphic>, <origin graphic>, <x>, <y>, <angle>, <size>,
<flags>)

Page 190

<angle> - angle (in degree thousandths) in which the origin graphic is going to be copied;
the normal angle is 0.

<size> - size (in percentages) in which the original graphic is going to be copied; the
normal size is 100.

<flags> - Indicates the mirrors and transparencies with which the original graphic will be
copied in the destination; the values are the following ones:

 0-Normal graphic
 1-Horizontal mirror
 2-Vertical mirror
 3-Horizontal and vertical (180°) mirror
 4-Transparent graphic
 5-Horizontal transparent and mirror
 6-Vertical transparent and mirror
 7-Horizontal and vertical transparent, mirror

This function will modify the indicated graphic, but only its copy that has been loaded in the
computer’s memory. The original graphic, that is stored in the FPG or MAP archives of the
disk, will remain unchangeable . For that reason, if at a specific moment of the game the
aim is to recover the original state of the graphic, it will be necessary to unload it from the
memory (with the unload_fpg() or unload_map() functions) and then, load it again.

Notes:
The map_xput() function is a little more complex than the map_put() function, which is
easier to use when it is not required to put rotated, scaled, mirror and transparent graphics.

The map_block_copy() function must be used to put a part of a graphic (instead of the full
graphic) inside another one.

When the map_put() function (or any other similar) is used to modify a graphic that is being
used as background of a scroll window, it is possible that the graphic you have put does not
immediately appear on screen. To solve this problem, you must use the refresh_scroll()
function.

Description:
Forces to scroll automatically and immediately. This function is rather advanced and, for that
reason, it could be difficult to understand its purpose.

As a parameter, the function requires the <scroll number> from 0 to 9 that was indicated in
the start_scroll() function as first parameter when the scroll started.

This function is used when a scroll region is automatically controlled, as the camera field of
the scroll structure corresponding to the identifier of a process has been defined.

The purpose is to force the (x0, y0, x1 and y1) values of that structure to be updated. If this
function is not used, these values won’t be updated until the following game’s frame. That is

move_scroll(<scroll number>)

Page 191

to say, when a scroll is automatically controlled and another process needs to know the
value of the coordinates of that scroll before the next frame (normally to be located in a
position in keeping with the background movement), do as follows:

1 - The scroll starts with start_scroll() .

2 - The process that will be used as camera is created and its identifying
code is put in the camera field of the scroll structure .

3 - A very high priority must be set for this process, for it to run before the
rest of the processes (putting in its priority local variable a positive whole
value like, for instance, 100).

4 - The move_scroll() function will be called just before the FRAME
statement of the process’ loop used as camera.

Thus, you will guarantee the previous execution of this process and, just at the end, the
updating of the values (x0, y0, x1 and y1) of the scroll structure , so the rest of the
processes may use these variables already updated.

The most widespread use of this function the aim is to have more than two backgrounds
in a scroll window. For that, a series of processes simulating a third or fourth plane are
created. The position of their coordinates will depend on the exact position of the scroll in
every frame.

Description:
Moves a text towards other screen coordinates. The text identifier and the (x, y) screen
coordinates towards which the text must be moved are specified as parameters. The
identifier of the text is a numeric code returned by the write() and write_int() functions
when they are required to write a text.

The centering code specified in the write() or write_int() functions will remain when this
function is used.

The specified coordinates always deal with the screen and may be in or out of it. It is
necessary to use the text_z global variable to modify the z coordinate of the texts (the
depth plane in which they appear).

Note:
To delete a text definitively, the text identifier is also required, and the delete_text()
function must be used for that.

move_text(<text identifier>, <x>, <y>)

Page 192

Returns:
A new angle closer to the final angle.

Description:
Brings an angle closer to another one at the given increment. The function returns the new
angle.

It is used when the aim is that an angle (<angle>) gradually varies until it becomes another
angle (<final angle>). For that, the function needs the original angle , the final angle and
the angular increment that is going to be added to or subtracted from the original angle.

Keep in mind that all the angles are specified in degree thousandths. The angular
increment is but a small angle (such as one degree (1000) or five (5000).

Returns:
True if the process is out of the region or False if it is not.

Description:
This function determines whether a process is out of a screen region. For that, the function
requires the identifying code of the process and a number of region.

The screen regions can be defined with the define_region() function and they are simply
rectangular zones of screen.

Region number 0 can not be defined, as it will always be equivalent to the entire screen.
Therefore, if 0 is specified as a second parameter, this function determines whether a
process is out of the screen (if it is not seen).

In case that the process’ graphic is out of the specified region, the function returns True (an
odd number). Otherwise, if the graphic is seen in that region, even partially, the function
returns False (any even number).

The process whose identifying code is indicated must have its graphic correctly defined
(normally in its graph variable). Otherwise, the system will notice an error, since it is not
possible to calculate the dimensions of a graphic if the process lacks it.

Description:
Starts playing a cd-audio track. The track number (from 1 to the number of songs contained
in the cd) must be indicated. The way to do it is as follows:

near_angle(<angle>, <final angle>, <increment>)

out_region(<identifying code>, <region number>)

play_cd(<track number>, <mode>)

Page 193

Mode:

0 - To play the song and then stop.
1 - To play this song and then the following ones.

Notes:
To have a song indefinitely playing, a loop must be implemented, using the is_playing_cd()
function to determine when the song is over.

The cd-audio reproduction volume can be controlled with the setup structure and the
set_volume() function.

Returns:
The first expression raised to the second one.

Description:
Calculates the result when the first expression is raised to the second one.

For instance, pow(3, 2) will return 9, which is 3 squared, that is to say, 3², or 3*3.

Note:
Take into account that in the language it is only possible to use integers within the
(min_int ... max_int) range . Therefore, when the result of the function exceeds this range,
incorrect results will be shown . In this case, the system won’t notice any error, so much
care must be taken.

Description:
Puts a graphic in the screen background. The function requires the file code in which the
graphic is stored, the graphic code inside the same file and the (x, y) coordinates at which
the graphic is intended to be put.

The graphics loaded with the load_map() function will be used as if they belonged to the
first file (the file with the code 0).

If the center graphic was not specified (setting its control point number 0 from the painting
tool), the coordinates will be referred to the position on the screen in which the graphic
center will be located.

The graphics displayed on the screen background like this will be within the game’s display
under all the processes, scroll regions, texts, etc.

If the aim is to have a graphic over some others, it must be created as a new process and
its z variable must be established, indicating the priority of its display.

pow(<expression>, <expression>)

put(<file>, <graphic>, <x>, <y>)

Page 194

The clear_screen() function must be used to clear the screen background.

Notes:
If the graphic that is intended to be put is merely a background screen, it is easier to use the
put_screen() function, since it does not require the screen coordinates, because it will
automatically center the graphic on the screen.

The xput() function is a little more complex than the put() function, but has more features
since, at the same time, it allows us to put rotated, scaled, mirror and transparent graphics.

To put a graphic inside another one (instead of in the screen background), the map_put() or
map_xput() functions must be used.

Description:
Establishes the colour of the pixel located in the background screen’s (x, y) coordinates.
That is to say, it sets a pixel of the indicated colour in the indicated coordinates.

The pixels put with this function in the background screen will be displayed in the game
below all the processes, scroll regions, texts, etc.

If the aim is to see a pixel over other graphics, you must create a new process, assigning
the picture of a point (in its graph variable) as a graphic and fixing its z variable with the
priority of its printing.

To clear the background screen, the clear_screen() function must be used.

Notes:
To read the colour of a specific background screen colour, the get_pixel() function must be
used, returning a number between 0 and 255 corresponding to the order of the colour inside
the palette.

The put() function must be used to set a graphic on the screen, instead of a simple pixel.

It is also possible to set the colour of a pixel in a specific graphic, instead of in the
background screen, by using the map_put_pixel() function.

Description:
Establishes the background screen. The function requires the file code in which the graphic
is, and the own code of the graphic intended to be displayed in the background screen
inside the file.

The graphics loaded with the load_map() function will be used as if they belonged to the
first file (the file with the code 0).

put_pixel(<x>, <y>, <colour>)

put_screen(<file>, <graphic>)

Page 195

The function does not require any coordinate as a parameter since, if the graphic size (in
pixels) is different from that of the screen, the former will simply be displayed centered in the
latter.

The clear_screen() function must be used to clear the screen background.

Note:
If the aim is to display a graphic on a specific part of the screen or a graphic that is not
centered , the put() may be used. Moreover, the xput() function allows us to display rotated,
scaled, mirror and/or transparent graphics in any screen region.

Returns:
A random numeric value.

Description:
Returns a random number (chosen at random) between the minimum value and the
maximum value , both included.

This function is normally used to set all the parameters intended to be varied in a game
when it is restarted. For instance, the coordinates of an enemy may be initialised with
random numbers, so it may appear in a different position in every game.

This function has another use. Thus, if we want that an action does not always occur, but
that it has a certain probability to occur, we normally use a statement of the following type:

IF (rand(0,100)<25)
// Action ...

END

In this case, the action will take place, on average, 25 per cent of the times the IF
statement would be executed. The reason for that is that, on obtaining a random number
between 0 and 100, this number would be less than 25 in a fourth of times, approximately.

Note:
By default, the values returned by the rand() function will completely be different in every
execution of the program. If we want to have always the same series of numbers, we may
use the rand_seed() function, specifying a number behind which the series of numbers
returned by the rand() function will always be predetermined.

rand(<minimum value>, <maximum value>)

Page 196

Description:

This function sets a seed for the generator of random numbers (the numbers generated by
he rand() function).

The seed can be any integer within the range (min_int ... max_int). If the seed is set, all
the numbers generated by the rand() function will be the same in every execution of the
program. That is to say, after having been established an origin seed, the rand() function
will return a series of numbers predetermined for this seed.

Description:
This function is used when a graphic that is being used as a background of a scroll region
has been modified with the map_put() , map_xput() , map_block_copy() or
map_put_pixel() functions, in order to update it.

The parameter required by the function is the <scroll number> that was specified when the
scroll started with the start_scroll() function.

When a graphic that is being used as background of a scroll is modified, it is not
automatically updated on the screen. On the contrary, it is necessary to call this function for
that purpose.

Once the graphic has been modified, it will remain like this during the rest of the program
execution, unless the graphic is unloaded from the memory (with the unload_fpg() or
unload_map() functions) and loaded again. In this case, the original state of the graphic will
be restored.

Note:
It can be noticed that, if the displaying graphic is at some coordinates out of the screen, it
won’t be necessary to call this function, because the parts of the scroll that are gradually
appearing on-screen are automatically refreshed.

Description:
This function rewinds an FLI/FLC animation to the beginning. This animation started with
the start_fli() function.

After having called this function, the animation will be displayed again from the beginning (to
display every frame of the animation, you must call the frame_fli() function).

The use of this function deals with the possibility of stopping an animation and repeating it
again from the beginning, without unloading it (end_fli()) and loading it again.

rand_seed(<numeric value>)

refresh_scroll(<scroll number>)

reset_fli()

Page 197

If the aim is to perform an animation indefinitely, restarting when it is over, then it is not
necessary to use this function , since it will automatically be done with frame_fli() , if you
keep on calling once the animation is over.

Only one animation can exist at the same time. Thus, it is not necessary to specify any
parameter for this function.

Description:
Advanced function, only for very expert users. Resets the sound system.

This function is used to activate new parameters of the sound hardware.

The following values of the setup global structure must be established:

setup.card
setup.port
setup.irq
setup.dma
setup.dma2

This function is normally used inside the sound setup programs.

To activate the rest of the values of the setup structure, those referred to the mixer volume,
the set_volume() function must be called. The values to establish the volume are the
following ones:

setup.master
setup.sound_fx
setup.cd_audio

Description:
Rotates a range of palette colours. This function is used to create movement effects in static
graphics, like the effect of flowing water.

To use this function, it is first necessary to create graphics that use a range of consecutive
colours of the original palette, in a perpetual cycle (for instance, colours ranging from 0 to
15, painting something with the colours 0, 1, 2, 3, ... , 14, 15, 0, 1, 2, ...).

Then, it is necessary to take care that those colours are not used by other graphics that are
going to appear on the screen at the same time, if you do not want to implement the effects
on them.

reset_sound ()

roll_palette(<initial colour>, <number of colours>, <increment>)

Page 198

The increment (third parameter) is normally 1 to perform the rotation in a direction and -1 to
perform it in the opposite direction, but other values may be used to perform the colours
cycle at higher speed.

To perform a cycle of colours from 0 to 15, it would be necessary to specify 0 as <initial
colour> and 16 as <number of colours>.

Notes:
If the aim is to determine the palette with which the cycle of colour must be performed,
this palette must be loaded from an archive with the load_pal() function.

To perform other palette effects without replacing some colours by other ones in cycles, the
fade() function must be used. This function allows us to perform many colours fading and
saturations at different speeds.

There are two simplified versions of this last function that allow us to carry out a fading to
black (fade_off()) and to undo it (fade_on()).

Description:
Saves a data block from the program memory to a file in the disk, to recover it later, when it
is required, with the load() function.

For that, the function requires the archive name , the offset (inside the computer memory)
of the variable, table or structure stored on the disk (the datum offset is obtained with
OFFSET <datum name>) and the number of memory positions that this datum occupies
(which may be obtained with sizeof(<file name>)).

It is possible to save several data (variables, tables or structures) if they have consecutively
been defined inside the same section (GLOBAL , LOCAL or PRIVATE). In this case, the
OFFSET of the first datum must be indicated as a second parameter , and the addition of
the sizeof() of all the data must be indicated as a third parameter .

Note:
It is not necessary to specify a path together with the archive name.

Description:
This function regulates the games’ speed; it defines the game’s number of frames per
second that will be displayed.

By default, the display will be regulated at 18 frames per second, which means that if a
process moves a pixel per every (FRAME), it will move on-screen at a speed of 18 pixels
per second.

save(<archive name>, <OFFSET datum>, <sizeof(datum)>)

set_fps(<n. of frames per second>, <n. of allowed omissions>)

Page 199

This function may establish the number of Frames Per Second (FPS) from a minimum of 4
to a maximum of 200; in general, no more than 24 frames per second are necessary to
obtain a fluid and slight movement.

The second parameter, maximum number of allowed omissions , is referred to how the
program must preferably work when it is executed in a computer fast enough to calculate
the required number of frames per second. It works as follows.

Number of allowed omissions.

0 - The game will go at slower speed when it is executed in a computer too
slow. That is to say, it will display the frames per second that the computer
has had time to calculate.

1 - If the computer can not calculate all the frames, it is allowed to
occasionally omit any frame to try to keep the game’s relative speed. The
game movements will become a little more abrupt, but faster.

2 or more - The game is allowed to omit as many consecutive frames as it
is indicated in this parameter to maintain the original relative speed of the
game. For instance, if the number of omissions is set at 4 and in the game
a process moved one pixel by one, in a very slow computer it could move
even in four pixels at a time.

Description:
Establishes a new video mode for the game execution. The allowed videomodes that may
be specified as a parameter are the following ones:

 m320x200 - VGA standard
 m320x240 - X Mode
 m320x400 - X Mode
 m360x240 - X Mode
 m360x360 - X Mode
 m376x282 - X Mode
 m640x400 - SVGA VESA
 m640x480 - SVGA VESA
 m800x600 - SVGA VESA
 m1024x768 - SVGA VESA

When a change of the videomode in the program is made, a fading to black (of the
program’s colours palette) will automatically be performed and in the following displays, the
colours palette will gradually be restored. That is to say, set_mode() always performs a
fade_off() just before changing the videomode and a fade_on() just after having changed it.

By default, all the programs start with the 320 by 200 pixel activated mode
(set_mode(m320x200)).

Note:
By using the set_mode() function, all the scroll and mode 7 windows that were activated in
the game, as well as all the processes displayed inside them, will be deleted.

set_mode(<new videomode>)

Page 200

Description:
Advanced function, only for very expert users. Adjusts the different volume controls
managed by the mixer of the system sound.

To adjust the volume, the following values of the setup global structure must be set:

setup.master - General volume
setup.sound_fx - Sound effects volume
setup.cd_audio - Cd-audio music volume

This function is normally used inside the sound setup programs, or even in the rest of the
programs, normally to adjust the CD_Audio music volume.

Note:
To activate the rest of the values of the setup structure (those referred to the sound card’s
parameters) the reset_sound() function must be called with the following defined values of
the structure:

setup.card
setup.port
setup.irq
setup.dma
setup.dma2

Description:
Sends a signal to a process (an object of the game). This function is mainly (but not only)
used to destroy (to kill) a process from another one, sending it a s_kill signal.

Any process may send a signal to another one, provided that the former has the identifying
code of the latter.

The signal types that may be sent to a process are the following ones:

s_kill - Order to kill the process. The process will not appear in the following frames of
the game any longer.

s_sleep - Order to make the process dormant . The process will remain paralysed,
without executing its code and without being displayed on screen (nor being detected by
the rest of the processes), as if it had been killed. But the process will continue to exist in
the computer’s memory.

s_freeze - Order to freeze the process. The process will remain motionless without
running its code. But it will continue being displayed on screen and it will be possible to
detect it (in the collisions) by the rest of the processes. The process will continue to exist
in the computer’s memory, even if its code is not executed.

set_volume()

signal (<id>, <signal>)

Page 201

s_wakeup - Order to wake up the process. It returns a slept or frozen process to its
normal state. The process will be executed and displayed again from the moment that it
receives this signal normally. A process that has been deleted (killed) can not be
returned to its normal state, since it does not exist in the computer’s memory any longer.

A process can also send these signals to itself, taking into account that the identifying code
of a process is always ID (word reserved in the language to this purpose). The statement
would be as follows:

signal(id, <signal>)

Self-deleting a process in this way, sending a s_kill signal to itself, will not instantaneously
destroy the process, but in the following (FRAME) display. The RETURN statement can be
used to immediately delete a process. All the signals sent to processes will be
implemented just before the next display of the game , that is to say, in the next FRAME
of the game (not instantaneously).

Together with these four signals, there are other four signals that directly correspond to the
previous ones. They are: s_kill_tree , s_sleep_tree , s_freeze_tree and s_wakeup_tree .

These signals are sent not only to the indicated process, but also to all the processes that
it has created . That is to say, if a s_kill_tree signal is sent to a process, the latter and all its
descendants (sons, grandsons, ...) will be deleted as well as all the processes created by it
and the processes created by the latter.

An exception to these last four signals is when there is an orphan process , that is to say, a
process whose father (the process that called it) is already dead. The orphan processes will
not receive the signal when it is sent to a process from which they are descended as, on
their father having disappeared, it won’t be able to send the signal to the processes it
created.

Note:
When a process is created, the system defines the son variable of the father with the
identifying code of the son, and the father variable of the son with the identifying code of the
father.

Description:
This second meaning of the signal function is similar to the previous one, with the exception
that, instead of sending a signal to a process from its identifying code, it allows us to send a
signal to all the processes of a specific type or to them and their descendants, when the
used signals are of the type s_kill_tree .

For instance, if several processes of the enemy type exist or may exist in a game, and the
aim is to freeze these processes (without freezing their descendants), the following
statement will be used:

signal(TYPE enemy, s_freeze);

signal(TYPE <process name>, <signal>)

Page 202

As it can be noticed, it is necessary to have the identifying code of a specific process in
order to send a signal to it. To delete a group of processes, it is necessary either that they
are of the same kind, that this group is made up of a process and its descendants, or that all
their identifiers are known (in order to send them the signal one by one).

It is possible to send a signal to a type of process, even if no process of this type is being
executed in the game. But if a signal is sent to a process that has already been killed, with
its identifying code (first meaning of the signal statement), there is a risk that the identifying
code is now used by another process, which is going to receive the signal. This happens, for
instance, when the aim is to kill a process that has already been killed, as it is possible that
another different one is being killed.

Note:
If the aim is to delete all the processes except the current one, the let_me_alone() function
may be used. This function sends a s_kill signal to all the processes, except the one that
executed this function.

Returns:
The channel number through which the sound is played.

Description:
Plays the effect whose sound code is specified as first parameter. At first, the sound must
have been loaded from a PCM archive with the load_pcm() function. This function returns
the sound code corresponding to this effect.

As a second parameter, it is necessary to specify the volume at which the sound is
intended to be reproduced, taking into account that 0 is the minimum volume, and 256 the
maximum volume.

As the third parameter, you must specify the frequency (speed) at which the sound is
intended to be reproduced, being 256 the standard frequency that will reproduce the original
sound. With lesser values, the sound will be reproduced with more accentuated bass. On
the contrary, with higher frequency values, it will be reproduced with more accentuated
treble.

The function returns the channel number that can be used by the stop_sound() function to
stop the sound and by the change_sound() function to modify its volume or frequency.

There are 16 sound channels. Thus, up to 16 sounds may be simultaneously played.

Returns:
The entire square root of the expression.

sound(<sound code>, <volume>, <frequency>)

sqrt(<expression>)

Page 203

Description:
Calculates the square root of the expression passed as a parameter, truncated to an
integer .

For instance, as a result, sqrt(10) will return 3 and not 3.1623, which is the real value
(approximately) of the square root of ten.

Returns:
The animation’s number of frames.

Description:
Starts a FLI/FLC animation contained in the specified archive , in the coordinates (x, y) (the
upper left coordinate of the display window must be specified).

The path can be specified in the <archive name>. The path is not necessary if the archive is
in the DIV Games Studio directory or in a subdirectory whose name coincides with archive
extension (for instance, "fli\anima.fli").

The screen must hold the whole animation. That is to say, if the animation occupies the
whole screen, the videomode must be fixed at first with the set_mode() function, starting
then the animation at the (0, 0) coordinate with the start_fli() function.

For your information, the function returns the number of frames that the whole animation
comprises.

The system will automatically activate the colour palettes that the FLI/FLC animation could
have. This can cause problems dealing with the representation of other graphics or fonts of
the program, if they had been drawn with a different palette.

If the aim is to combine other graphics with animation on-screen, the latter must have just
one colour palette (which is normally called "palette low FLI/FLC ") and the graphics must
have been drawn with that same palette.

Once the animation has started, its frames will gradually be shown with respective calls to
frame_fli() .

It is possible to have but one active animation at every time . Therefore, after having
started an animation with start_fli() and having been displayed with frame_fli() , this
animation must finish with the end_fli() function before starting another different animation.

Note:
The reset_fli() function allows us to rewind the animation, so that the frame_fli() function
continues to execute it from the beginning.

start_fli(<archive name>, <x>, <y>)

Page 204

Description:
This is an advanced function which requires a skillful user.

Creates a mode-7 display window. That is to say, it displays a three-dimensional graphic in
a folded plane. In order to obtain this effect, this function will be called with the following
parameters:

<m7 number> - Up to 10 mode-7 windows can be created on-screen, numbered from 0 to
9. If the aim is to create but one, the best thing is to define window number 0. This number
will be necessary later to modify the window parameters, as the system will need to know
which one of the possible 10 mode-7 windows is intended to modify.

<file> - The graphics intended to be folded in the window must be in a file whose file code
must be specified here, as a second parameter of the function. The graphics loaded with the
load_map() function will be used as if they belonged to the first file (the file with the code 0).

<graphic> - The third parameter must be the code of the main graphic that is going to be
folded in the window and it must belong to the file previously indicated.

<external graphic> - Here, it is possible to indicate either a 0, if the aim is not to see any
graphic beyond the graphic folded in the perspective, or a graphic code of the same file
that will be shown in the perspective beyond the main graphic , until it gets the horizon. The
height and width of this graphic must be powers of two, not higher than 8192 (these powers
of two are: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 and 8192). For instance, it
can be a 64 pixel width by 32 pixel height graphic. This graphic will also be shown folded.

<region number> - Here, the rectangular screen region in which the mode-7 is going to be
shown, will be indicated. If 0 is indicated as a region number, this region will be shown on
the whole screen. The rest of regions must previously be defined with the define_region()
function (a region is but a rectangular zone of the screen).

<Height of the horizon> - The last parameter to indicate will be the distance, in pixels, from
the upper part of the window, where the horizon line is intended to be put. If the camera is
placed above the folded plane, then nothing will be displayed above the horizon line (this
space is normally filled with another scroll or mode-7 window). Otherwise, if the camera is
placed below the plane, then nothing will be shown below this horizon line.
__

Besides the call to the function, some values of the m7 global structure must be
initialised for the window to work correctly . This is a structure of 10 records (one for
every possible mode-7 window) and every record has the following fields:

 Camera - Identifying code of the camera
 Height - Height of the camera
 Distance - Distance of the camera
 Horizon - Height of the horizon
 Focus - Focus of vision
 Z - Depth plane
 Colour - Exterior colour

start_mode7(<number of m7>, <file>, <graphic>, <external graphic>, <number of
region>, <height of horizon>)

Page 205

How to visualise process graphics in mode 7.
To create a process whose graphic is displayed in the mode 7, its ctype local variable must
be defined as c_m7 (type of coordinate as mode 7 coordinate), which will be done with
the following statement:

ctype=c_m7;

After this, the process will be displayed in the mode 7 with its graphic (graph) scaled
depending on the distance at which it is. The process must only modify its x and y variables
to move through the folded plane.

When a process belongs to the mode-7 (that is to say, the value c_m7 has been
assigned to its local variable ctype):

� Its x and y variables will be referred to the folded main graphic’s point above which the
process graphic will be placed.

� Its z variable will lose its effect, as the graphics will appear in strict order of depth. This

variable will only be useful to indicate display priorities in graphics exactly placed in the
same depth plane.

� The process will automatically be deleted when the mode 7 window, to which the

process belongs, is deleted with the stop_mode7() function, or when the videomode is
changed with the set_mode() function as, by doing so, the mode 7 windows will also be
deleted.

__

If there were several mode 7 windows, the process would be displayed in all of them by
default. If the process had to be displayed just in one of them, its cnumber local variable
should be then defined. For instance, if there were 6 mode 7 windows (from number 0 to
number 5) and the aim was to display a process only in windows 0 and 2, the following
statement should be included in it:

cnumber=c_0+c_2;

__

Important:
In order to activate the mode 7 window it is essential to start the camera field as,
without this field, the window can not determine from where the folded plane must be
seen .

The camera will be placed in the folded plane, at the indicated distance of the process
whose identifying code has been set in camera , orientated at its angle itself (the one
indicated by its angle local variable). The height at which the camera is located with
respect to the bottom will be that indicated in the height field.

See the help about the m7 structure for further information about these issues, or about
how to access them.

Page 206

For a process to have several graphics (several views), depending on the angle from which
it is observed, its graphic must be defined with the xgraph local variable (instead of the
graph variable). To define this variable, it is necessary, at first, to create a table (of any
name), first indicating the graphic’s number of views and then the graphics codes for
these views, starting with angle 0 and in an counterclockwise direction. For instance:

GLOBAL
views_car[]=4,100,101,102,103;

The table views_car would define 4 views: graphic 100 for angles near 0 degrees, graphic
101 for angles near 90 degrees, graphic 102 for angles near 180 degrees, etc.

And then, the xgraph variable must be initialised in the process code with the following
statement:

xgraph=OFFSET views_car;

To get an example about what we have just seen, examine some of the DIV Games
Studio’s sample games that use this technique. Thus, read the comments about these
programs (for instance, see the program Speed for dummies).

Description:
This function has a certain complexity, requiring a skillful user.

Creates a scroll window, in which it will perform a view against a background graphic (the
décor of the game). That is to say, by using a graphic bigger than the display window as a
game background, a part of this graphic can be showed and shifted in any direction.

To obtain this effect, this function will be called with the following parameters:

<scroll number> - Up to 10 scroll windows can be created on screen, numbered from 0 to
9. If the aim is to create only one, the best thing is to define window number 0. This name
will later be necessary to modify the parameters of the window, as the system will need to
know which one of the 10 possible scroll windows is intended to change.

<file> - The graphics that are intended to be shown as a background or décor in that
window must be in a file whose file code must be specified here, as a second parameter of
the function. The graphics loaded with the load_map() function will be used as if they
belonged to the first file (the file with the code 0).

<graphic> - The third parameter must be the code of the main graphic that is going to be
displayed as a background in the window and that must belong to the file previously
indicated. This graphic is normally the main décor of the game on which the action will be
developed. It is a graphic bigger than the display window, that will be shifted in one or
several directions and on which the graphics of the game will be placed.

start_scroll(<scroll number>, <file>, <graphic>, <background graphic>, <number of
region>, <locking indicator>)

Page 207

The scroll window will be initially placed with the control point number 0 of this graphic in
the upper left corner, when this point has been defined in the graphic editor .

<background graphic> - Here, 0 will be indicated if the aim is to obtain a single scroll plane
(a single background graphic), or another graphic code if it is intended that it appears as
scroll background (deeper), behind the foreground. In order to see this background plane, it
is essential that the main graphic (foreground) has parts painted in colour number 0 of the
palette, as these transparent zones will allow us to see the background graphic through
them.

<region number> - The rectangular screen region in which the scroll is going to be shown
will be here indicated. If 0 is indicated as a region number, it will be shown on full screen.
The rest of regions must previously be defined with the define_region() function (a region
is but a rectangular zone of the screen).

<locking indicator> - A value defining whether each of the two scroll planes is horizontally
and vertically cyclical will be here indicated. For instance, a plane is horizontally cyclical
when, on leaving the picture on the right, the picture appears on the left. To obtain this
value, the following quantities must be added:

+ 1 - If the foreground is horizontally cyclical
+ 2 - If the foreground is vertically cyclical
+ 4 - If the background is horizontally cyclical
+ 8 - If the background is vertically cyclical

That is to say, 0 if none of the two planes must be cyclical, 15 (1+2+4+8) if both planes must
be cyclical in both axes, 12 (4+8) if only the background must be cyclical, etc.

When a (foreground or background) graphic is smaller than the display window, the system
will force it to have a cyclical scroll plane. Otherwise, the scroll window could not be
completely filled, without cyclically repeating the graphic (tile).
__

Besides the call to the function, some values of the scroll global structure must be
initialised for the correct working of the window .This is a structure of 10 records (one
for each possible scroll window) and every record has the following fields:

x0, y0 - Foreground coordinates
x1, y1 - Background coordinates
z - Depth plane
camera - Identifying code of the camera
ratio - Background’s relative speed
speed - Foreground’s maximum speed
region1 - First screen region
region2 - Second screen region

There are two ways to program the movement of the scroll windows:

� Manually, modifying in each frame of the game the fields x0, y0, x1 and y1 of this
structure (the scroll planes’ coordinates).

Page 208

� Automatically, for what the identifying code of a process is needed in the field camera
of this structure. From then, the system will be in charge of following the graphic of this
process in the scroll window.

See the scroll structure either for further information about these fields, or to know how to
access them.

How to display processes’ graphics in the scroll.
In order to create a process whose graphic is displayed in the scroll window, it is necessary
to define its ctype local variable as c_scroll (type of coordinate as scroll coordinate),
which will be done with the following statement:

ctype=c_scroll;

After that, the process will be displayed in the scroll with its graphic (defined in the graph
local variable). The process must modified only its x and y variables to scroll.
__

When a process belongs to the scroll (assigning the value c_scroll to its local variable
ctype):

� Its x and y variables will be referred to the point of the foreground’s graphic on which the
graphic of the process will be placed.

� Its z variable will be now referred to the variables z of the processes that also belong to

the same scroll window. That is to say, each time that a scroll window is displayed, all
the graphics that belong to it (ranged by their z) will be displayed just after it. Then, the
processes that don’t belong to that scroll window will continue to be displayed.

� The process will be automatically eliminated when the scroll window to which the

process belongs is eliminated with the stop_scroll() function. Or when the videomode is
changed with the set_mode() function as, on doing so, the scroll windows will be also
eliminated.

__

If there were several scroll windows, the process would be displayed by default in all of
them. If it had to be displayed only in some of them, its cnumber local variable should be
defined. For instance, if there were 6 scroll windows (numbered from 0 to 5) and the aim
was to display a process only in windows 0 and 2, the following statement should be
included in it:

cnumber=c_0+c_2;

In order to observe an example of what it has been said, the best thing is to examine some
of the sample games of DIV Games Studio that use this technique. Thus, the reader is
directly referred to the comments of these programs (for instance, see the example
Helioball).

Page 209

Description:
Turns the CD-Audio off, stopping the song that was playing. The songs are reproduced with
the play_cd() function.

Note:
The cd-audio reproduction volume may be controlled with the setup structure and the
set_volume() function.

Description:
Deletes the mode 7 window whose number (from 0 to 9) is passed as a parameter. This
<m7 number> was indicated as first parameter in the start_mode7() function, and it is
necessary as there can be up to 10 different mode 7 windows, and the system needs to
know which one is finishing.

On deleting a mode 7 window, all the processes that exclusively belong to that window will
be killed automatically. These processes have their ctype variable with the c_m7 value and
they are not displayed in any other mode 7 window.

Important:
On changing the videomode with the set_mode() function, all the mode 7 windows (and
their processes) will also be deleted. In this case, it is not necessary to use this function
(stop_mode7()).

Note:
The creation of a mode 7 window is a somewhat advanced process and it requires to start
several parameters, like that of the camera, some of them required by the start_mode7()
function and some others contained in the m7 global structure (like the m7.camera
variable).

Description:
Deletes the scroll window whose number (from 0 to 9) is passed as a parameter. This
<scroll number> was indicated as first parameter in the start_scroll() function and it is
necessary since there can be up to 10 different scroll windows, and the system needs to
know which one is finishing.

On deleting a scroll window, all the processes that exclusively belong to that window will
automatically disappear. These processes have their ctype variable with the c_scroll value
and they are not displayed in any other scroll window.

stop_cd()

sto p_mode7 (<number of m7>)

stop_scroll(<scroll number>)

Page 210

Important:
On changing the videomode with the set_mode() function, all the scroll windows (and their
processes) will also be deleted. In this case, it is not necessary to use this function
(stop_scroll()).

Note:
The creation of a scroll window is a somewhat advanced process and it requires the start of
several parameters, some of them required by the start_scroll() function and some others
contained in the scroll global structure (like the scroll.x0 variable).

Description:
Stops the sound that is being played through the channel, passed as a parameter.

The required <channel number> is the value returned by the sound() function when the
reproduction of a sound effect starts.

There are 16 sound channels. Thus, up to 16 sounds may simultaneously be played.

Note:
To stop a sound gradually, turning its volume down little by little, several calls to the
change_sound() function must be made to slightly reduce the channel volume until it
reaches level 0. Then, the stop_sound() can be called to definitively stop the sound.

Description:
Executes the operating system’s command passed as a parameter.

Notes:
One of the utilities of this command is, for instance, to delete a temporary archive that has
been created in the program, calling the command of the system DEL <archive name>.

Description:
Unloads from the memory the font (the type of letter or the set of graphic characters)
whose code is passed as a parameter.

stop_sound(<channel number>)

system(<"external command">)

The system can be blocked depending of the executed commands. In these cases you
must reset the computer. There is no guarantee dealing with this function running, due to
the multiple incompatibilities that can appear between the external commands and the
manager of internal processes of DIV Games Studio.

unload_fnt()

Page 211

This is the value returned by the load_fnt() function by loading a new letter
font stored in a archive FNT in the computer’s memory.

After having unloaded a font, much care must be taken not to go on using this font in the
program. Otherwise, the program can become blocked.

It is not necessary to unload the font before finishing the program, as the system will do it
automatically.

So, a font must be unloaded from the memory only when it is not going to be used for a
specific time and when the aim is to free up the occupied space in the computer’s memory
to load other resources (other graphics files, sounds, fonts, etc.).

Note:
Font number 0, (the system font having 0 as font code), can not be unloaded .

Description:
Unloads the graphics file whose code is passed as parameter from the memory. This <file
code> is the value returned by the load_fpg() function when a new graphics file is loaded in
the memory.

After having unloaded a graphics’ file, much care must be taken not to go on using in the
program any graphic that was in that file. Otherwise, the program could become blocked.

It is not necessary to unload the file from the memory before finishing the program, as
the system will do it automatically.

Therefore, a file must be unloaded from the memory only when it is not going to be used for
a while and when the aim is to free up space occupied in the computer’s memory in order to
load other resources (other graphics files, sounds, fonts, etc.).

Note:
The graphics individually loaded with the load_map() function will not be unloaded when
file number 0 (with code 0) is loaded , even if they were used as if they belonged to it.
These graphics will have to be unloaded by using the unload_map() function.

Description:
Unloads the graphic whose code is passed as a parameter from the memory. This <graphic
code> is the value returned by the load_map() function by loading a new graphic stored in a
archive MAP in the computer’s memory.

After having unloaded a graphic, much care must be taken not to go on using this graphic
in the program. Otherwise, the program can become blocked.

unload_f pg(<file code>)

unload_map(<graphic code>)

Page 212

It is not necessary to unload the graphic before finishing the program, as the system will
do it automatically.

So, a graphic must be unloaded from the memory only when it is not going to be used for a
specific time and when the aim is to free up the occupied space in the computer’s memory
to load other resources (other graphics files, sounds, fonts, etc.), which will make sense only
with graphics of a certain size, that is to say, big enough so as to be worth freeing up the
space they occupy.

Note:
The graphics individually loaded with the load_map() function will not be unloaded when file
number 0 (with code 0) is unloaded with the unload_fpg() function, even if these graphics
are used as if they belonged to it.

Description:
Unloads the sound whose code is passed as a parameter from the memory. This <sound
code> is the value returned by the load_pcm() function when a new sound effect is loaded
in the memory.

After having unloaded a sound effect, much care must be taken not to go on using in the
program this effect (its code) for the sound() or unload_pcm() functions. Otherwise, the
program could become blocked.

It is not necessary to unload the sound from the memory before finishing the program,
as the system will do it automatically.

Therefore, a sound must be unloaded from the memory only when it is not going to be used
for a while and when the aim is to free up space occupied in the computer’s memory to load
other resources (other graphics files, sounds, fonts, etc.), which will be logical just with
sound effects of a certain length, that is to say, big enough so as to be worth freeing up the
space they occupy.

Note:
The stop_sound() function must be used to stop a sound effect, but keeping it in the
memory in order to be played again when desired.

Returns:
The identifying code of the text that has been written.

Description:
This function is used to show an alphanumeric text on-screen. For that, it requires the
following parameters:

unload_pcm(<sound code>)

write(, <x>, <y>, <centering code>, <text>)

Page 213

 - The font code or type of letter that is going to be used. Here, you must put either
0 when the aim is to use the system’s font (white, small font, 6 by 8 pixels), or the font code
returned by the load_fnt() function when a new font is loaded in the program.

<x>, <y> - The coordinates referred to the screen in which the text is going to be displayed,
first in the horizontal axis and then in the vertical one.

<centering code> - This code determines the position of the text specified by the previous
coordinates. Its values are:

0-Up left 1-Up 2-Up right
3-Left 4-Center 5-Right
6-Down left 7-Down 8-Down right

For example, if a text is written at the 160, 0 coordinates and with the centering code 1 (Up),
then the text will center in the column 160 and it will be displayed from line 0 downwards.
Or, if the aim is to have a text in the upper left corner, it must be displayed at the 0, 0
coordinates and with centering code 0 (Up left).

<text> - The text to be written as a literal (that is to say, a text in inverted commas) will be
specified as last parameter.
__

The displayed text will remain on-screen until it is deleted with the delete_text() function,
that requires as parameter the identifying code returned by write() .

The write_int() function must be used to display the numeric value of a variable (such as
the score of the player).

The texts will remain unchangeable on screen even if graphics are displayed on it or
processes’ graphics pass before or behind them.

Notes:
The depth plane in which the written texts appear is controlled through the text_z global
variable, that is useful to regulate which graphics must be seen above the texts and which
ones must be seen below them.

Then, it will be possible to move the texts towards another position if necessary, by using
the move_text() function, which also requires the identifying code returned by write() as
parameter.

When fonts loaded from archives FNT are used, the colours’ palette used to generate
these fonts must be activated (see load_pal()). Otherwise, the colours may appear
changed, being the text incorrectly displayed.

Returns:
The identifying code of the text that has been written.

write_int(, <x>, <y>, <centering code>, <OFFSET variable>)

Page 214

Description:
This function is used to show the numeric value of a variable. For that, it requires the
following parameters:

 - The font code or type of letter that is going to be used. Here, it is necessary to
put either 0 when the aim is to use the system’s font (white, small font, 6 by 8 pixels), or the
font code returned by the load_fnt() function when a new font is loaded in the program.

<x>, <y> - The coordinates referred to the screen in which the numeric value is going to be
displayed, first in the horizontal axis and then in the vertical one.

<centering code> - This code determines the position of the numeric value specified by the
previous coordinates. Its values are:

0-Up left 1-Up 2-Up right
3-Left 4-Center 5-Right
6-Down left 7-Down 8-Down right

For example, if a numeric value is written at the 160, 0 coordinates and with the centering
code 1 (Up), then the numeric value will be centered in the column 160 and it will be
displayed from line 0 downwards. Or, if the aim is to have a numeric value in the upper left
corner, it must be displayed at the 0, 0 coordinates and with centering code 0 (Up left).

<OFFSET variable> - The offset inside the computer’s memory of the variable whose value
is intended to be displayed, must be specified as last parameter (the offset of the data is
obtained with the OFFSET operator).
__

The displayed numeric value will remain on-screen until it is deleted with the delete_text()
function, that requires as parameter the identifying code returned by write_int() .

Important:
During the time that the value of the variable appears on screen, this value will automatically
be updated every time the variable is modified. For that, new calls to write_int() are not
necessary.

The write() function must be used to display any kind of alphanumeric text (a fixed text).

The texts will remain unchangeable on screen even if graphics are displayed on it or
processes graphics pass before or behind them.

Notes:
The depth plane in which the written texts appear is controlled through the text_z global
variable, that is useful to regulate which graphics must be seen above the texts and which
ones must be seen below them.

Then, it will be possible to move the texts towards another position if necessary, by using
the move_text() function, which also requires the identifying code returned by write() as
parameter.

When fonts loaded from archives FNT are used, the colour palette used to generate these
fonts must be activated (see load_pal()). Otherwise, the colours may appear changed,
being the text incorrectly displayed.

Page 215

Warning:
It is not possible to display an expression, as it is shown below:

write_int(0,0,0,0,OFFSET variable + 1);

To display the value of the variable plus 1. That is to say, if the aim was to display this value,
it would be necessary either to add 1 to the variable or to create another variable, assigning
it the value of the original variable plus 1, for instance:

variable2 = variable + 1;
write_int(0,0,0,0,OFFSET variable2);

In this case, you should take into account that you had to update the value of the variable2
at least once every FRAME of the game, as by changing variable the value of variable2 will
not automatically be updated unless the variable2 = variable + 1 statement is again
executed.

Description:
Advanced version of the put() function to put a graphic on the screen background. This
function requires the following parameters, in order:

<file> - file code with the graphics library that contains both graphics. The graphics loaded
with the load_map() function will be used as if they belonged to the first file (the file with the
code 0).

<graphic> - code of the graphic inside the file that is going to be displayed on screen.

<x>, <y> - coordinates dealing with the screen where the graphic is intended to be put.
These coordinates reveal the position in which the graphic center (or the control point
number 0, if it is defined) will be placed.

<angle> - angle (in degree thousandths) in which the graphic is going to be displayed; the
normal angle is 0.

<size> - size (in percentage) in which the graphic is going to be displayed; the normal size
is 100.

<flags> - Indicates the mirrors and transparencies with which the graphic will be displayed;
the possible values are the following ones:

 0-Normal graphic
 1-Horizontal mirror
 2-Vertical mirror
 3-Horizontal and vertical (180°) mirror
 4-Transparent graphic
 5-Horizontal transparent and mirror
 6-Vertical transparent and mirror
 7-Horizontal and vertical transparent, mirror

xput(<file>, <graphic>, <x>, <y>, <angle>, <size>, <flags>, <region>)

Page 216

<region> - Number of region (window inside the screen) in which the graphic must be
displayed. This value will normally equal 0 to display the graphic at any position of the
screen. The define_region() function must be used to define a region.
__

The graphics displayed in this way on the background screen will be in the game display
below all the processes, scroll regions, texts, etc.

If the aim is that a graphic is above others, it is necessary to create it as a new process
and fix its z variable with the priority of its display.

The clear_screen() function must be used to clear the screen background.

Notes:
The put() function is a simplified version of the xput() function, and it is useful when you do
not want to rotate, scale, mirror or display the graphic with transparencies.

The map_put() or map_xput() functions must be used to put a graphic inside another one
(instead of the screen background).

If the graphic intended to be put is just a screen background, it is easier to use the
put_screen() function, as it does not require the screen coordinates because it will
automatically center the graphic on screen.

Page 217

 !!����2��

�

Page 218

This global structure is used to control the joystick . It contains a series of logical fields
related to the programming of this device: the state of the buttons (whether they are pressed
or not) and the state of the main four control directions.

To access these fields, the name of the field must be preceded by the word joy and the
symbol . (period). For instance, to access the left field (which indicates whether the left
control is pressed), it is necessary to use joy.left .
__

left - This field will be at 1 when the joystick is orientated to the left , and at 0 in the
opposite case.

right - This field will be at 1 when the joystick is orientated to the right , and at 0 in the
opposite case.

up - This field will be at 1 when the joystick is orientated up , and at 0 in the opposite case.

down - This field will be at 1 when the joystick is orientated down , and at 0 in the opposite
case.

For instance, to perform an action in a program when the joystick is moved to the right
(joy.right), a statement like the following one must be included in the code:

IF (joy.right)
// Action to perform (statements)

END

For diagonal positions, the two fields comprising this diagonal must be verified. For
instance, to perform an action when the joystick is in the upper right diagonal, the following
statement will be used:

IF (joy.up AND joy.right)
// Action to perform (statements)

END
__

button1 , button2 , button3 and button4 - These fields indicate the state of up to four
joystick’s buttons, being at 1 when the respective button is pressed, and at 0, when it is not.

 ������-���������!����/������������3��*	�*�

C1 – Predifined GLOBAL Structures

GLOBAL STRUCT joy

Page 219

Some joysticks only have 2 buttons. In this case, they will be buttons number 0 and 1. In
computers with two connected joysticks, the second joystick will have the buttons number 2
and 3.
__

Note: When an analogical reading of the joystick is required (to know the exact coordinates
at which the joystick is located), it will be necessary to use the get_joy_position() function.
Obviously, this function will only be useful in an analogical joystick , and it won’t work in the
digital ones.

This 10 record structure contains certain fields dealing with changeable parameters of the
mode 7 window . The ten records have the same field names, but each of them modifies
the parameters of a different mode 7 window (as up to 10 windows of this type may be
activated).

A mode 7 window could be defined as a screen region that shows a graphic plane three-
dimensionally folded (for instance, like a sheet of paper with a picture horizontally
positioned, displayed on screen with a virtual bottom (or top).

For a record (numbered from 0 to 9) of the m7 structure to make sense, that mode 7
window (from 0 to 9) must first be activated with the start_mode7() function (see this
function for further information about the mode 7 windows).

It is understood that the fields of this structure are complementary to the call parameters of
this function. In order to observe a practical example of a mode 7, it is possible to access
the help about the start_mode7() function.

How to use the m7 structure:
 To access these fields, the field name must be preceded by the word m7, the number of
record in square brackets and the symbol . (period).

For instance, if two mode-7 windows, number 0 and number 1 were initialised, the camera
variable of both windows could be accessed as m7[0].camera and m7[1].camera ,
respectively. When the mode-7 window number 0 is accessed, it is also possible to omit the
number of windows in square brackets. That is to say, the m7.camera variable and the
m7[0].camera variable are, to all ends, the same for the language.
__

camera - Identifying code of the process followed by the camera. To move the camera
that controls the mode-7 view, only a mode-7 process must be created, a process having its
local variable ctype=c_m7 , and its identifying code must be put in the camera variable of
this structure. After so, only the x, y and angle local variables of this process must be
modified and, for instance, the advance() function must be used to move the camera
forward.

GLOBAL STRUCT m7

Page 220

For the mode 7 window to be activated, it is essential to initialise the camera field. Without
this field, the window can not determine from where the folded plane must be seen .
__

height - Height of the camera. This variable of the structure manages the distance to which
the camera is placed from the bottom. By default, its value equals 32. Any positive number
will make the camera be placed upper as the number is greater. If a negative number (less
than zero) is put in the height field of this structure, then the camera will be placed below
the folded plane, showing a "top " instead of a "bottom ".

Two mode-7 images can be created within the same region: one as top and the other as
bottom (one with positive height and the other with negative height). In this case, it is
important to establish the z variable of the m7 structure of both, thus to determine the
depth plane in which each one must be painted.
__

distance - Distance from the camera to the followed process. The perspective of the camera
will always be positioned slightly behind the process whose identifier has been put in the
camera field of the structure. This is done for the graphic of the process used as a camera to
be seen, just in case this process has defined it (in its graph or xgraph local variable).

By default, the camera will be positioned at 64 points behind the process. "Behind" means a
point placed at the indicated distance from the graphic in the angle opposite to that one to
which the process is orientated. For instance, if the process is facing right, 64 points to its
left.
__

horizon - Horizon’s height. This is the same value as that indicated as last parameter of the
start_mode7() function. Its initial value will equal to the one indicated in the call to this
function. The utility of this variable is to make the horizon go up or down in every frame of
the game, depending on the needs of the latter.

On changing the horizon’s height , the "facing up " and "facing down " effects will be
obtained in the mode 7 window .
__

focus - Focus for the camera. This variable controls the perspective of the camera. By
default, its value equals 256, but any value ranging from 0 and 512 may be put, obtaining
different distortion effects of the three-dimensional plane.

That is to say, this field controls the angle got by the camera focus. The greater this value
is, the closer all the objects (processes) placed in the folded plane will be seen.
__

z - Mode-7 display priority. To indicate the depth plane in which this window must be
painted, with respect to the rest of processes. By default, this variable will equal 256, which
means that, as the processes have their local z variable at 0 by default, the mode-7 window
will be painted in a greater (deeper) depth plane, being the graphics of the processes
painted above the window. This situation may change by modifying the z variable of the
window (for instance, putting it at -1) or the z variable of the processes (for instance, putting
it at 257).
__

Page 221

colour - Colour for the mode-7 exterior. When, in the call to the start_mode7() function,
any external graphic is not specified (the fourth call parameter is put at 0), this variable will
control the colour in which it is aim to paint the exterior. In other words, the colour that the
screen must be painted in beyond the graphic that is being folded (beyond its limits).

By default, this field is initialised at 0, which is normally the black colour in the colour palette,
Therefore, if this field is not assigned another value (and an external graphic is not defined)
the screen will be seen in black beyond the foreground.

This global structure is used to control the mouse. It contains a series of fields related to the
programming of this driver, such as the screen position, the pointer graphic, the state of the
buttons, etc.

In order to access these fields, the name of the field must be preceded by the word
mouse and by the symbol . (period). For instance, in order to access the field x
(horizontal coordinate of the mouse pointer), it is necessary to use mouse.x .
__

x, y - Horizontal and vertical coordinates of the mouse. It will be necessary to read only
these two fields (mouse.x and mouse.y) to know the position of the mouse cursor on
screen. To position the mouse at other coordinates (to force its position), assign the new
coordinates to these two fields.
__

graph - Graphic code assigned as a mouse pointer. By default the mouse won’t be
visible . To make it visible, it is necessary to create the graphic that is going to be used as a
pointer in the graphic editor , to load it in the program (with the load_fpg() or load_map()
functions, depending on whether this graphic has been stored in a file FPG or in an archive
MAP) and finally, to assign its graphic code to this variable (mouse.graph). Then, the
mouse pointer will be seen on screen.

The center of the graphic will appear at the mouse.x , mouse.y coordinates, unless its
control point number 0 has been defined in the graphic editor . If this point (usually called
hot spot) is defined, then it will appear at the coordinates indicated in the fields mouse.x
and mouse.y .

For instance, if an arrow is created to depict the mouse pointer (as it happens dealing with
the mouse pointer of DIV Games Studio), the hot spot (control point number 0) will be
defined in the upper left corner of the graphic, as it is the active point inside the graphic.
Then, when the mouse was located at the (0, 0) coordinates, for instance, the "tip of this
arrow " would precisely be located at those coordinates.
__

file - File code containing the graphic. The file code containing the graphic of the mouse
pointer is defined in this field. It is not necessary to indicate a value here if the graphic was
loaded from an archive MAP , or if it is stored in the first archive FPG loaded in the
program. Otherwise, mouse.file will have to be assigned the file code that returned the
load_fpg() function on loading the file that contains the graphic of the mouse pointer.
__

GLOBAL STRUCT mouse

Page 222

z - Priority of the graphic display. Indicates the depth plane in which the graphic of the
mouse pointer must be displayed. By default this field will be equal to -512, which implies
that the pointer will be seen above the rest of graphics and texts . The bigger this field
is, the deeper the mouse pointer will be located.

If the aim was to make a graphic of a process appear above the mouse pointer, suffice
would be to assign an integer less than -512 (for instance, -600) to the local z variable of
that process.
__

angle - angle with which the graphic of the mouse pointer will be seen. The value of
mouse.angle by default is 0, which implies that this graphic won’t be seen rotated, unless a
new angle is assigned to this field.

Keep in mind that the angles must be specified in degree thousandths. For instance, the
mouse.angle=90000; statement will make the pointer appear rotated 90 degrees .
__

size - Size of the graphic in percentage. By default, this field will be equal to 100 (the
graphic will be seen 100%). Then, it is not necessary to indicate another value here, unless
the aim is to scale the graphic (to display it expanded or reduced).

If, for instance, the aim was to double the original size of the graphic (being displayed at
200%), the mouse.size=200; statement should be used.
__

flags - In this field, different values will be indicated when the aim is to mirror the graphic of
the mouse (that is to say, horizontally or vertically inverted), or to display it as a (semi)
transparent graphic. The possible values that can be assigned to the mouse.flags are the
following ones:

0-Normal graphic (value by default)
1-Horizontal mirror
2-Vertical mirror
3-Horizontal and vertical mirror (180°)
4-Transparent graphic
5-Transparent and horizontal mirror
6-Transparent and vertical mirror
7-Transparent, horizontal and vertical mirror

__

region - Graphic’s clipping region. A value must be assigned to this field just when the aim
is to make the mouse pointer visible only inside a region (a rectangular zone of the
screen). In order to achieve it, it is necessary first to define this region with the
define_region() function and then, to assign the number of the region that has been
defined to this field (mouse.region).

By default, this value will be equal to 0, that is a number of region referred to the entire
screen. Therefore, the graphic will be seen on the whole screen.
__

left , middle and right - These three fields store logical values (0 or 1) depending on
whether the mouse buttons are pressed or not (they correspond with the left, central and

Page 223

right mouse buttons). Normally, only two buttons of the mouse (left and right) are activated,
being ignored the state of the central button. This depends on the mouse driver installed in
the computer.

For instance, to perform an action in a program when the mouse left button is pressed
(mouse.left), it is necessary to include the following statement in the code:

IF (mouse.left)
// Action to perform (statements)

END

This 10 record structure contains certain fields related to changeable parameters of the
scroll windows . These ten records have the same field names, but each of them modifies
the parameters of a different scroll window (as up to 10 windows of this type can be
activated).

A scroll window could be defined as a screen region that only shows a part of a graphic
bigger than that window (this graphic is normally the décor or background of the game).
The scroll is the movement of that window through the graphic in any direction, being
displayed the entire graphic little by little, section by section.

For a record (from 0 to 9) of the scroll structure to make sense, that scroll window (from
0 to 9) must first be activated with the start_scroll() function (for further information about
the scroll windows, see this function).

It is understood that the fields of this structure are complementary to those of the call
parameters of this last function.

How to use the scroll structure:

To access these fields, the field name must be preceded by the word scroll , the record’s
number in square brackets and the symbol . (period).

For instance, if two scroll windows, number 0 and number 1, are initialised, it can be
possible to access the camera field of both windows as scroll[0].camera and
scroll[1].camera , respectively. Moreover, when the scroll window number 0 is accessed, it
is possible to omit the window’s number in square brackets. That is to say, the
scroll.camera and the scroll[0].camera variables are, to all intents and purposes, the
same for the language.
__

x0, y0 - Coordinates of the scroll’s foreground, when the scroll ISN’T automatic (the camera
field has not been defined). These are the fields that will have to be modified in order to
move the scroll window’s foreground .

GLOBAL STRUCT scroll

Page 224

These two fields store the horizontal and vertical coordinates of the upper left corner of the
scroll window (the point of the foreground’s graphic that will be seen in the window’s upper
left corner).

When the camera field of this structure has been defined, the movement of the scroll
window will be automatic; thus, they are read-only fields. In order to check where the scroll
is at every moment (see the move_scroll() function).
__

x1, y1 - Background’s coordinates, when a graphic for the background has been defined.
When the scroll ISN’T automatic (the camera field has not been defined), these are the
fields to modify in order to move the background of the scroll window .

When the camera field of this structure has been defined, the movement of the scroll
window will be automatic; thus, they will be read-only fields, and the definition of the
background’s movement speed will depend on the ratio field of the same structure.
__

z - Scroll display priority, to indicate the depth plane in which this window must be painted,
with respect to the rest of processes. By default, this variable will equal 512, which implies
that, as the processes have their local z variable at 0 by default, the scroll window will be
painted in a greater (deeper) depth plane, being the graphics of the processes displayed
above the window. In order to vary this situation, it is possible to modify either the z
window’s variable (for instance, putting it at -1) or the z processes’ variable (for instance,
putting it at 600).
__

camera - It is not necessary to initialise this field, as it will be initialised when the aim is that
the scroll is automatic , that is to say, that the system deals with it to follow a process (a
game’s graphic) always. For that, it is necessary to put the process’ identifying code in this
field. Thus, the shift of the scroll window will pass to be controlled automatically by the
system, always trying to center the graphic of this process in the window. This process must
have the ctype local variable with the value c_scroll .

By default, this field will equal 0, which implies that the scroll won’t follow any process,
unless the identifying code of a process is assigned to camera . When it is done, this
process will be known as the scroll’s camera process .

Note: A series of fields are now shown only for automatic scroll windows . It means that
for those fields to make sense (and, therefore, effect), the camera field of this structure has
to be defined previously with the identifying code of the process that is going to be
centered in the scroll. These values will affect the way in which the process called scroll
camera is going to be followed.

__

ratio - Automatic scroll windows . When two scroll planes have been defined in the call to
the start_scroll() function, in this field it is possible to define the movement speed of the
background with respect to that of the foreground. By default, this value will equal 200,
which implies that the background will move half the speed of the foreground; if it is defined
as 400, it will move at the fourth part (four times slower), 100 at the same speed, 50 at
double speed of the foreground, etc.
__

Page 225

speed - Automatic scroll windows . Maximum speed of the scroll foreground, which will
equal 0 by default. It means that no speed limit is imposed. If a limit is imposed, specifying
the maximum number of points that the foreground can be shifted for every game’s frame,
the camera process will be uncentered in the scroll window when it is moved at a higher
speed.
__

region1 - Automatic scroll windows . Scroll lock region, whose value by default equals -1,
which means that there is no lock region. If this field is defined with a number of region (a
rectangular zone of the screen previously defined with the define_region() function), then
the system won’t scroll as long as the camera process remained inside it.
__

region2 - Automatic scroll windows . External region of the scroll. By default, its value is
equal to -1, which means that there is no external region. If this field is defined with a
region’s number and a maximum speed has been defined in the speed field, then the
system will ignore that speed limit when the camera process is going to exceed from this
region (it is done in order to continue to see the process (for its graphic to be visible always
within the scroll window).

Note: If the two regions (region1 and region2) are defined, region 1 is normally lesser than
region 2 (the first one is contained in the second one). It will imply that:

� The background won’t shift (the scroll won’t be performed) while the camera process’
graphic is inside region 1.

� If the maximum speed has been defined, then a scroll will be performed to try to restore

the graphic of the camera process to region 1, but without exceeding the imposed speed
limit.

� If the graphic of the camera process tried to exceed from region 2, the imposed speed

limit would be ignored in order not to allow it.

This is a very advanced data structure, which is not at all necessary to create a game, no
matter how difficult it is, as DIV Games Studio’s process manager will normally take charge
of the sound hardware automatically.

All the fields referred to the sound hardware are automatically updated by the program if you
have a sound card, provided that the BLASTER or GRAVIS environment variable is properly
initialised.

This one record structure contains a series of fields divided into two groups: the first one, to
activate new parameters of the sound hardware installed in the computer, and the second
one to adjust the different volume controls managed by the sound system’s mixer .
__

The reset_sound() function must be called to activate the new parameters of the sound
hardware inserted in this structure (in the card , port , irq , dma and dma2 fields).

GLOBAL STRUCT setup

Page 226

The set_volume() function must be called to activate the new volume levels inserted in the
structure (in the master , sound_fx and cd_audio fields).

This structure is normally used inside the sound system setup programs.

Note: To access these fields, the field name must be preceded by the word setup and by
the symbol . (period). For instance, setup.master must be used to access the master field
(which indicates the mixer’s general volume level).
__

card - Indicates the type of sound card installed in the computer. The program accepts
cards of the Sound Blaster (tm) and Gravis Ultra Sound (tm) families, as well as all those
100% compatible with them.

The values that this field can take are the following ones, depending on the sound card type:

Without card or sound = 0
Sound Blaster 1.5 = 1
Sound Blaster 2.0 = 2
Sound Blaster Pro = 3
Sound Blaster 16 = 4
Sound Blaster AWE = 5
Gravis Ultra Sound = 6
Gravis Ultra Sound MAX = 7

__

port - Indicates the computer’s communications port in which the data of the sound card
must be written and read.

The values that this field can take are the following ones, depending on the port assigned to
the sound hardware:

0x210 = 0
0x220 = 1
0x230 = 2
0x240 = 3
0x250 = 4
0x260 = 5

__

irq - This field indicates the number of IRQ (Interrupt request) assigned to the active sound
card.

The values that this field can take are the following ones, depending on the IRQ used by the
card:

IRQ 2 = 0
IRQ 3 = 1
IRQ 5 = 2
IRQ 7 = 3
IRQ 10 = 4
IRQ 11 = 5
IRQ 12 = 6

Page 227

IRQ 13 = 7
IRQ 14 = 8
IRQ 15 = 9

__

dma - The direct memory access (DMA) channel’s number used by the sound card must be
indicated in this field. This field can take values from 0 to 10, directly depending on the
channel’s number.
__

dma2 - Some sound cards have a second direct memory access channel faster than the
previous one, of 16 bits, commonly named HDMA, DMA2 or DMA16. Like in the previous
field of this structure, this second channel can take values from 0 to 10 depending on the 16
bit channel’s number used by the card.
__

master - This field contains the output general or master volume of the card. A number
ranging from 0 (minimum volume) and 15 (maximum volume) must be here indicated. By
default, the value equals 15, the maximum volume. Turning the master volume down will
affect the sound effects’ volume as well as the CD audio music reproduction’s volume.
__

sound_fx - This field controls the volume to which the sound effects executed with the
sound() functions are reproduced.

This volume is independent from that used with the sound functions. The former is general
for all the sound effects. On the contrary, the latter (volume indicated in the functions) is
specific for every sound.

The values of this field also range from 0 (minimum volume) and 15 (maximum volume). By
default, the value will be equal to the maximum volume.
__

cd_audio - This field controls the volume of the music that will be reproduced from the
audio tracks of a CD ROM or Compact Disc.

Similar to the two previous fields, the values of this field can also rage from 0 (minimum
volume) and 15 (maximum volume). By default, the value will be equal to the maximum
volume.

Page 228

This is a 10 position global table, from timer[0] to timer[9] , and each of these 10 positions
is a counter of second hundredths that is automatically incremented.

At the beginning of the program, these 10 counters will be put at zero. They are used to
time within a program. For that purpose, they can be put at zero at any time.

There are 10 counters so that the user can dedicate each of them to perform a different
action inside the game, no matter which ones of the 10 counters are used. Normally, if the
program only needs one counter (most of the times), that numbered 0 (timer[0]) is used, as
the language allows us to omit the zero in square brackets in this case. That is to say, if only
one counter is needed, it is possible to use timer simply.

For instance, to implement a process that 5 seconds after the beginning of its execution (if it
had been called) performed a specific action, it would be constructed in a way similar to the
following one (by using, for instance, the counter timer[9]):
__

Note 1: As timing is performed in hundredths of a second, these counters can be
incremented in 1, 2, 3, 4, etc. in every frame of the game That is to say, the user can not
wait for timer[9] to equal 500 exactly, as a frame could indicate 497 hundredths passed
(since it was put at zero with timer[9]=0;) and the following frame 502 hundredths, without
having passed through value 500.

Note 2: It is also important to note that much care must be taken to prevent several
processes of the program from using the same counter for different purposes.

If, for instance, a process_example() was created, in every frame of the game these
processes would never manage to execute the action of the five seconds, as each of them
would put the counter timer[9] at 0 at the beginning of their execution, thus invalidating the
timing of the previous processes.

Bearing in mind that the counter timer[9] is GLOBAL , that is to say, it is the same for all the
game’s processes, if a process puts it at 0, it will be put at 0 for the rest of the processes.

Note 3: Finally, much care must be taken regarding the conditions similar to IF
(timer[9]>=500) ... , as these conditions won’t only be activated once every 5 seconds , but
they will be activated always after the first 5 seconds .

C2 – Predifined GLOBAL Tables

GLOBAL timer[]

Page 229

This global variable always indicates the ASCII code of the last pressed key in the last
game’s frame.

The ascii variable will be at 0 if no key has been pressed in the previous frame of the game.

The ASCII codes are a list of characters (letters, numbers and symbols) numbered from 0 to
255 that have been standardised. The codes less than 32 are called control characters;
from 32 to 127 appears the international set of characters; and from number 128, appears
the extended set of characters (according to the PC standard).

Therefore, an ASCII code is referred to the character that has been created with the last
keystroke (or keystroke combinations, in those cases such as letters bearing a stress
mark).
__

Important: There is another predefined global variable, called scan_code , which also
contains the code of the last pressed key. But, unlike ascii , this new variable stores the
scan code of the key. That is to say, it indicates which key has been pressed and not
which character has been generated by it (like ascii).

There are some constants designating these keys codes (keyboard scan codes). The key()
function of the language is normally used in order to verify whether a key is being pressed
or not. This function receives one of these keys codes as a parameter, and returns 0 if the
key is not pressed or 1 if it is pressed.

This global variable indicates the frame dump on screen types that must be performed in
every frame of the game.

The term dump means that the game’s frames are sent to the monitor (to the video memory
of the graphic card).
__

There are two applicable types of dump which directly correspond with two constants that
can be assigned to the dump_type variable.

partial_dump - When indicated with the following statement, partial dumps will be
performed:

dump_type=partial_dump;

Only the graphics that are updated, that have changed with respect to the previous frame,
will be dumped on screen in this mode. It is advisable to activate this dump in order to gain
speed when a game (or one section of it) is programmed without a scroll or mode 7 window

C3 – Predifined GLOBAL Variables

GLOBAL ascii

GLOBAL dump_type

Page 230

occupying the entire screen. That is to say, either when the game shows graphics’
movements against a fixed background or when the active scroll or mode 7 windows are
smaller than the screen.

complete_dump - When indicated with the following statement, complete dumps will be
performed:

dump_type=complete_dump;

In this mode, the entire screen will be dumped no matter whether the graphics have
changed or not. This mode is slower than the partial dump . Nevertheless, it must be used
when the game has a scroll or mode 7 window occupying all the screen.
__

By default, the value of dump_type is complete_dump . That is to say, if no other value is
indicated in this variable, complete dumps on the screen will be performed after each
game’s frame (which is normally slower than performing partial dump).

The dump type can be changed during a program’s execution as often as necessary,
according to the requirements of the stages (or sections) under execution at each moment.

__

Note: There is another global variable also related to DIV Games Studio’s management on
screen. This is called restore_type and it defines the type of restoring that must be
performed on screen after every game’s frame (which graphics or texts must be deleted).

This global variable indicates if a screen fading (a gradual change of the game’s palette
colours) is being performed at a specific moment. Its value will be:

false (0) - If a fading isn’t being performed.

 true (1) - If a fading is being performed.

The purpose of this variable is to be able to determine the end of a screen fading started
with the fade() or fade_on() functions.

On using these functions, a fading of the palette’s colours will start, gradually coming closer
to the definitive colours in the next frames of the game. That is to say, in every FRAME
statement a part of the fading will be performed.

When a fade is started, the fading variable will automatically become equal to true (1) and
when it is finished, it will recover its original value, false (0).
__

Note 1: Generally, this variable is used to control the fade() function, and verify whether the
fading has already been executed (performed). For instance, to stop the program’s
execution until the fading is finished, which can be done with a statement as follows (just
after the call to the fade() function):

GLOBAL fading

Page 231

WHILE (fading)
FRAME;

END

Literally this statement defines: "while the fading continues to be performed, a new
frame must be displayed ".

Note 2: All the programs perform a fade (fade_on()) at the beginning of their execution
(automatically). Therefore, this variable will be put at true (1) at the beginning of all the
programs until this initial fading doesn’t finish (while the screen "fading on " is being
performed).

This global variable is used to define the filter applied to the read joystick’s coordinates.

It is defined as a percentage from 0 % to 99 %. By default, joy_filter will equal 10 (a 10%
filter will be applied).

The purpose of applying this filter to the joystick’s coordinates is to make its movements
gentler and to avoid possible "irregularities " in the coordinates’ reading. Those joystick’s
coordinates must be obtained with the get_joy_position() function. The joy_filter variable
will only be useful when the latter function is being used.

The bigger the filter applied to the joystick is, the gentler the movements of the latter will be.
But, at the same time, its answer will take longer.
__

Note: It can be noticed how, for small values of joy_filter , many "irregularities " appear in
the reading, and for very big values (like 95%) the coordinates’ reading is much gentler and
regular, but slightly slower.

It is essential to have a joystick (or gamepad) connected to the computer for this variable to
be useful. If the joystick is connected during the program’s execution, the system won’t
detect it (it must be connected from the beginning).

The state of the joystick (or gamepad) connected to the computer is indicated in this global
variable. These are the values that this variable takes by default:

0 - If the joystick reading system is disabled. This value means that a
joystick connected to the computer either has not been found at the
beginning of the program’s execution, or has been disconnected.

1 - If the joystick reading system is active. This is the initial value by
default, but if the joystick is disconnected (or there is no joystick

GLOBAL joy_filter

GLOBAL joy_status

Page 232

connected), the reading system will be disabled (indicating 0 in the
joy_status variable).

If the system is disabled, it can be reactivated by simply assigning 1 to joy_status (with the
joy_status=1; statement). But if, after a limited time, no joystick is detected, the system will
be disabled again.
__

There is a special mode in which the joystick reading system won’t be ever disabled . This
mode is simply defined by assigning 2 to joy_status .

joy_status=2; // Activates special mode

Nevertheless, much care must be taken as, if the joystick reading system is activated in this
way, and there is no joystick connected to the computer, the game’s execution may be
slowed down .
__

Note: To read the joystick in the programs, the global joy structure is normally accessed.
This structure always indicates its offset and the state of its buttons (whether they are
pressed or not).

Programs are provided with an anti-blocking system that will make the manager of
processes of DIV Games Studio interrupts its execution when a process exceeds the
maximum execution time in a game’s frame.

This maximum time is indicated in the max_process_time global variable in hundredths of
second . By default, its value is 500 hundredths (5 seconds).

That is to say, when a process takes longer than the indicated time in executing a FRAME
statement (which indicates that the process is ready for the following frame of the game), an
execution error will arise.

Note: The utility of the possibility of changing this variable, assigning a new value to it, is to
avoid this error in the programs in which there is a process that must be doing calculations
for a long time.

The following statement must be used to order the process’ manager, for instance, not to
interrupt a process, unless its execution in a frame is longer that 30 seconds:

max_process_time=3000;

As 30 seconds are 3000 second hundredths.
__

Note: Keep in mind that the time used by every computer to do the program’s calculations is
different. Therefore, this value must be defined with a certain margin, in order to avoid to
exceed the maximum execution time when the game is executed in slower computers.

GLOBAL max _process _time

Page 233

This global variable indicates the restoring type that must be performed after each frame on
screen.

The term background restoring means to recover the screen zones in which graphics
have been painted or texts have been written in the previous frame. That is to say,
"unpaint " the graphics and "unwrite " the texts (delete them).

There are three applicable restoring types which directly correspond to three constants that
can be assigned to the restore_type variable.

no_restore - The fastest one, the background is not restored (-1)
partial_restore - Average, partial restoring (0)
complete_restore - The slowest one, complete restoring (1)

By default, the value of restore_type equals complete_restore . That is to say, if a different
value is not indicated in this variable, a complete screen restoring will take place after each
frame of the game.

This restoring mode (complete) is the slowest one out of these three modes. Thus, it will
surely be possible to gain speed in the game’s execution (for it to be faster in slow
computers), if a different value is assigned to this variable. For instance, the following
statement must be used to indicate a partial restoring:

restore_type=partial_restore;

This statements orders the process’ manager of DIV Games Studio to partially restore the
screen background (only those screen zones where graphics or texts have been put) after
the following frames of the game.

The no_restore type (not restoring the screen background) is the fastest mode. However, it
is only applicable when the game develops inside a scroll or mode 7 window occupying the
entire screen. Otherwise, the graphics will leave signs (of the previous frames) on moving
through the screen.

The restoring mode can be changed under a program’s execution as often as necessary,
according to the requirements of the stages (or sections) under execution at each moment.
__

Note: There is another global variable also related to DIV Games Studio’s management on
screen. This is called dump_type and it defines the type of frames dump that must be
performed (what information must be sent to the monitor after every frame of the game).

This global variable always indicates the scan code of the last pressed key in the last
frame of the game.

GLOBAL scan_code

GLOBAL restore_type

Page 234

The scan_code variable will be at 0 if no key has been pressed in the previous frame of the
game.

This variable is often used to wait in a program for the user to press any key with a
statement similar to the following one:

WHILE (scan_code == 0)
FRAME;

END

This statement indicates that, while no key has been pressed in the previous frame (while
scan_code equals 0), the frames of the game must continue to be displayed.

The scan codes are simply a numeric list of the PC’s keys. These codes can slightly vary
(in any key) regarding different keyboards, as there are keyboards of different languages,
with a varied number of keys (101,102..), etc.

However, almost all the codes of the main keys remain constant. There is a predefined list
of constants (synonymous for these codes) in the language that can be seen by accessing
the help about keys codes (or keyboard scan codes). These numeric values will precisely
be assigned to the scan_code variable when the respective keys are pressed in the
program.
__

Important: There is another predefined global variable, called ascii , which also contains the
code of the last pressed key. But, unlike scan_code , this new variable stores the ASCII
code (character) generated by the key. That is to say, it indicates which character has
been generated by the last pressed key and not which key has been pressed (like
scan_code).

The key() function of the language is normally used in order to verify whether a key is being
pressed or not. This function receives one of these keys codes as a parameter, and returns
0 if the key is not pressed or 1 if it is pressed.

The state of different special keys, such as ALT , CONTROL, etc. is indicated in this
predefined global variable.

Each of these keys have the following code assigned:

Right SHIFT key = 1
Left SHIFT key = 2
CONTROL keys = 4
ALT and/or ALT GR keys = 8
SCROLL LOCK key = 16
NUM LOCK key = 32
CAPS LOCK key = 64
INSERT key = 128

GLOBAL shift_status

Page 235

The shift_status variable will contain the addition of all the codes of the pressed or
activated keys .

For instance, if the ALT key was pressed and the CAPS LOCK was activated, the
shift_status variable’s value would equal 72 (8+64).

In order to verify whether a key like ALT is pressed, it is not possible to check that
shift_status is equal to 8, as it would imply that ALT is the only pressed or activated
special key.

A correct verification would be carried out as follows:
 IF (shift_status AND 8 == 8)

// The [ALT] key is pressed ...
END

Note: The key() function is normally used to verify whether a key is pressed. But it is not
possible to determine with this same function whether keys such as CAPS LOCK are
activated, but only if they are pressed or not.

There are two variables containing the code of the last pressed key; scan_code (scan code
of the last pressed key) and ascii (ascii code of the last pressed key).

The depth plane in which the texts must appear on screen is indicated in this global variable.
That is to say, it indicates what must appear above the texts and what below them.

The depth planes can be any integer within the range (min_int ... max_int) and, the greater
the number is, the deeper the text or graphic will be placed.

By default, the processes’ graphics have their local z variable at 0 , the texts text_z at -256
and the mouse pointer has mouse.z at -512 by default.

That means that, by default, if these values are not modified, the texts will appear above the
processes’ graphics and the mouse pointer above the texts.

If, for instance, the aim was that the texts appeared above the mouse pointer (opposite to
which has been established by default), two things could have been done:

a) To place the pointer’s plane lower than the texts’ plane (a greater
number), such as, for instance: mouse.z=-200; (as -200 is a number
bigger than -256).
b) To place the texts’ plane upper that the pointer’s plane such as, for
instance, text_z=-600; as -600 is a number lesser than -512 and, thus, a
lesser depth plane (less deep).

Note 1: The text_z variable is GLOBAL for all the texts. That is to say, it is not possible to
define texts in different depth planes.
Note 2: The texts can only be displayed with the write() (alphanumeric texts) function or
with the write_int() (variables’ numeric values) function.

GLOBAL text_z

Page 236

In this structure, different variables of internal use (used by the manager of processes of
DIV Games Studio) are stored.

They are local variables reserved for the system. It is not necessary to know these
variables, as most of them are not useful to create programs.

Important: The modification of the values of these variables will probably provoke the
blocking of the computer, an incorrect working of the manager of processes or problems
on using many of the internal functions. Therefore, no responsibility is assumed for the
hypothetical problems derived from an incorrect use of the reserved structure.
__

process_id - Identifying code of the process. This value is normally obtained with the
reserved word ID and the value of this field must not be modified.
__

id_scan - It is internally used on detecting collisions in order to save the identifying code of
the last process that has collided with the current process.
__

process_type - Type of the current process, normally obtained with the operator TYPE,
later indicating the process name.
__

type_scan - It is internally used to detect collisions or obtain identifying codes of processes
of a specific type.
__

status - Present state of the process. The values that this field can adopt are the following
ones:

0 - Non-existent process.
1 - Process that has received a signal (s_kill).
2 - Alive or awake process (s_wakeup).
3 - Asleep process (s_sleep).
4 - Frozen process (s_freeze).

__

param_offset - Offset of the computer’s memory in which the parameters received by the
process are located.
__

program_index - Program’s counter. Offset of the computer’s memory in which the first
statement that must execute the process in the next frame is located.
__

C4 – Predifined LOCAL Structures

LOCAL STRUCT reserved

Page 237

is_executed - It indicates whether this process has already been executed in the current
frame.
__

is_painted - It indicates whether the graphic of the process has already been painted in the
current frame of the game.
__

distance_1 - Vertical distance of the process (reserved for processes displayed in a mode 7
window).
__

distance_2 - Horizontal distance of the process (reserved for processes displayed in a
mode 7 window).
__

frame_percent - Percentage of the following frame completed by the process. This value
will be useful when the FRAME statement is used indicating a percentage. Otherwise, it will
simply be equal to 0 (0%) when the process has not been executed and 100 (100%) when it
has already been executed.
__

box_x0, box_y0 - Upper left coordinate of the graphic in the previous frame of the game
(where the graphic was placed at screen coordinates).
__

box_x1, box_y1 - Lower right coordinate of the graphic in the previous frame of the game.

Page 238

This is a predefined LOCAL variable, which means that each process will have its own value
in its angle variable.

The angle local variable defines the angle in which the graphic of the process must be
seen, indicating an angle with regard to the original graphic in degree thousandths .

By default, the value of this variable will be equal to 0 (0 degrees) for all the processes, but
when the graphic is modified, it will rotate to adjust to the new angle.

The angle may be defined as any integer within the range (min_int ... max_int).

Some examples of the angles that define certain values in the angle local variable are now
shown (keep in mind that the angles are expressed in degree thousandths):

...
-180000 - Angle to the left
-90000 - Angle downwards
-45000 - Angle of the diagonal down/right
0 - Angle to the right
+45000 - Angle of the diagonal right/up
+90000 - Angle upwards
+180000 - Angle to the left
+270000 - Angle downwards
...

__
Important: When the aim is to rotate the graphic of a process, it is advisable to paint it
orientated to the right , as it will be displayed like this by default (with the angle local
variable equal to 0).

Thus, when another angle is specified, the graphic will appear exactly orientated towards it.

For instance, a graphic that has been drawn to the right can be seen orientated upwards (to
the angle of 90 degrees) by indicating the following statement:

angle=90000; // 90 degree thousandths (90 degrees).

That is to say, if a graphic was painted orientated towards another angle, (for instance,
downwards), it would become orientated downwards by default, in the angle 0 , which can
provoke confusions when it comes to orientating the graphic towards another angle.
__
Note: To make the graphic of a process advance its coordinates x, y towards its angle (the
one specified angle in the local variable of the process) a specific distance, the advance()
function can be used.

The graphic of a process must be indicated assigning a graphic code to the graph local variable.

C5 – Predifined LOCAL Variables

LOCAL angle

Page 239

This is a predefined LOCAL variable, which means that each process will have its own value
in its bigbro variable.

This variable always contains the identifying code of the process created by the father just
before creating the current process after it. That is to say, when the process that called the
current one had created another one before, this variable will indicate which one is it.

Inside the language, elder brother is the name given to this process. For further
information, see the hierarchies of processes in the language.

This variable will be equal to 0 if the father process (the one that called the current one) has
not created any other process before. If it has created one, or more than one, bigbro will
indicate the identifying code of the last one.
__

Note: The identifying code of the younger brother is indicated in the predefined smallbro
local variable.

This is a predefined LOCAL variable, which means that each process will have its own value
in its cnumber variable.

The local cnumber variable is exclusively used when, in a game, several scroll windows
or several mode 7 windows simultaneously appear on screen.

� For further information about the scroll windows , see the help about the start_scroll()
function, which is used to activate them in the program.

� For further information about the mode 7 windows , see the help about the

start_mode7() function, which is used to activate them in the program.
__

The cnumber utility lies on indicating in which of these windows the graphic of the
process must be seen . Obviously, this variable must be defined only in processes visible
inside the scroll windows or the mode 7 windows . This variable is useless for the rest of
the processes (screen processes or processes with no graphics).

If the process must be seen in all the windows , then it won’t be necessary to modify this
variable, as the value of cnumber (0) by default precisely indicates so.

Up to 10 windows of both types may be activated, numbered from 0 to 9. There are ten
predefined constants used to define the value of cnumber . These are c_0, c_1, c_2, ...,
c_9 and directly correspond with the 10 possible windows of these types.

cnumber must be assigned the addition of the constants corresponding with the
windows in which the process must be visible .

LOCAL bigbro

LOCAL cnumber

Page 240

For instance, if there are 4 scroll windows numbered 0, 1, 2 and 3 in a program, and the
aim is to define that a specific process must be only visible in windows 0 and 2, the following
statement must be used:

cnumber=c_0+c_2;

The value of cnumber can be changed during the process execution if necessary.
__

Note: Keep in mind that for the graphic of the process to be seen in all the windows, it is not
necessary to do anything, as it is the option by default.

This is a predefined LOCAL variable, which means that each process will have its own value
in its ctype variable.

The system of coordinates used by the process is indicated in this variable. That is to say,
it shows how the process’ coordinates (contained in the x and y local variables) must be
interpreted.

It is possible to use three different systems of coordinates, directly corresponding with three
constants that can be assigned to the ctype variable.

c_screen - Screen coordinates
c_scroll - Scroll coordinates
c_m7 - Mode 7 coordinates

By default, the ctype value is c_screen , used for the process’ graphic coordinates to be
interpreted as referred to the screen, where the upper left corner is (0, 0).

With the following statement, c_scroll will be assigned to ctype :

ctype=c_scroll;

For the process’ graphic coordinates to be interpreted as referred to a scroll window, with
coordinates located above the foreground’s graphic.

With the following statement, c_m7 will be assigned to ctype :

ctype=c_m7;

For the process graphic coordinates to be interpreted as referred to a mode 7 window, with
coordinates located above the main graphic, three-dimensionally folded in that window.
__

Note: There is another local variable that also affects the way in which the process
coordinates must be interpreted, This variable is resolution , which establishes the
resolution (scale) in which the coordinates are defined.

LOCAL ctype

Page 241

This is a predefined LOCAL variable, which means that each process will have its own value
in its father variable.

This variable always contains the identifying code of the process that created (called) the
current process (the one that has this variable). That is to say, it indicates which process
called it.

Inside the language, father process is the name given to the process that calls another one.
The process that has been called receives the name of son process. For further
information, see the hierarchies of processes in the language.

The DIV’s manager of processes is the process named div_main . Its function is to create
the main process of the program (PROGRAM) at the beginning of the game’s execution.
Therefore, it will be the father of the main program, as well as the father of all the
processes that become orphaned (processes whose father has been killed or finished
before them).
__

Note: The identifying code of the son process is indicated in the predefined son local
variable.

This is a predefined LOCAL variable, which means that every process will have its own
value in its file variable.

In the case that several graphics’ files FPG have been loaded in a program, the file local
variable indicates which file contains the graphic that the process is using.

The graphic of a process must be indicated by assigning a graphic’s code to the graph
local variable.

If just one file has been loaded in the program, it won’t be necessary to assign any value to
file , as the code of the first loaded file will equal 0 and this is the value of the variable by
default.

If the graphic has been loaded with the load_map() function, it won’t be necessary to assign
any value to file either, as the graphics loaded with this function are used as if they
belonged to file number 0 (to the first one that is loaded in the program).

When more than a file is loaded, it is necessary to indicate in each process in which one its
graphic is stored. It is done by assigning the file code returned by the load_fpg() function
(on loading this file FPG) to the file local variable.

Note: Normally, if several files are sequentially loaded in a program, the first one will have
code 0, the second, code 1, the third, code 2 and so on.
__

LOCAL father

LOCAL file

Page 242

In general, if several files are used, it is a good practice to have the same number of global
variables (named, for instance, file1 , file2 , ...) containing the code of each of the files, to
use them in the processes when it comes to defining its file variable (the file FPG that must
be used).

The variables would be defined inside the section GLOBAL in the following way:

 GLOBAL
file1 ; // First file’s code
file2; // Second file’s code
...

Next, these variables would be assigned the file codes on loading them with the load_fpg()
function in the following way (supposing that the names of the files is name1.fpg ,
name2.fpg , etc.):

file1=load_fpg("name1.fpg"); // Files loading
file2=load_fpg("name2.fpg");
 ...

These files are generally loaded at the beginning of the program. Later, the used file would
only have to be defined inside each process with the following statement (supposing that the
process uses graphics stored in the file name1.fpg):

file=file1 // The first file is used

__

Note: Keep in mind that defining the file local variable is futile, unless a graphic’s code is
assigned to the graph local variable.

This is a predefined LOCAL variable, which means that every process will have its own
value in its flags variable.

The flags local variable indicates the mirrors and transparencies of the displayed graphic in
the processes. The possible values are the following ones:

 0-Normal graphic.
 1-Horizontal mirror.·
 2-Vertical mirror.
 3-Horizontal and vertical mirror (180°).
 4-Transparent graphic.
 5-Transparent and horizontal mirror.
 6-Transparent and vertical mirror.
 7-Transparent, horizontal and vertical mirror.

By default, the value of the flags variable is 0. That is to say, if it is not modified, the graphic
will be displayed opaque (not transparent or mirror).

LOCAL flags

Page 243

The terms mirror and transparency are now defined:

� Horizontal mirror , the graphic will be horizontally flipped. That is to say, if it was facing
left, it will face now right and vice versa.

� Vertical mirror , the graphic will be vertically flipped. That is to say, if it was facing up, it

will face now down and vice versa.

� Transparency (or ghost-layering), the graphic will be displayed semitransparent. That

is to say, it will be possible to see what is placed behind the graphic, as if it was a
coloured window, unlike the opaque graphics normally displayed.

For instance, the following statement must be used to display a transparent graphic of a
process:

flags=4;
__

Note: The graphic of a process must be indicated assigning a graphic code to the graph
local variable.

This is a predefined LOCAL variable, which means that each process will have its own value
in its graph variable.

Normally, most of the processes correspond with a graphic object displayed on screen that
will be placed at the indicated coordinates in the x and y local variables. It is necessary to
define which graphic corresponds with this process by assigning a graphic code to the
graph local variable.

By default, this variable will be equal to 0, which implies that no graphic will be displayed for
this process.

The graphics must first be created in the graphic editor of DIV Games Studio (with the
option "New...” of the maps menu) and then, they can be saved in an archive MAP
(containing this graphic), or in a file FPG together with other graphics (it is possible to
create a new file with the option "New..." of the files menu).

That is to say, the graphics used in a program may come from an archive MAP (that
contain just one graphic) or from a file FPG (that may contain many graphics).

The same graphic may be used in a program by many processes at the same time.

Archives MAP

In order to use a graphic from an archive MAP in the program, it must be loaded by calling
the load_map() function, which will return the graphic code that must be assigned to the
graph variable.

LOCAL graph

Page 244

The graphic codes returned by this function are simply integers from 1000.

A GLOBAL variable is normally used to save this graphic code and then, it is assigned to
the graph variable.
__

Files FPG

In order to include a graphic that has been done in the graphic editor in a file FPG , it is
necessary to drag the graphic window to the file window (click on the graphic, move to
the file and release). Then, the program will ask for the graphic code , so an integer ranging
from 1 and 999 must be included here.

Thus, to use the graphic in a program, the file FPG that contains it must first be loaded with
the load_fpg() function, assigning then the graphic code to the graph variable.

It won’t be necessary if only one file is loaded, as the file variable equals 0 by default in all
the processes and 0 will always be the first file’s code loaded in the program.

Note: There are more local variables related to the graphic of a process. The most
important ones are mentioned below:

Graph - Graphic code.
File - File code.
X, Y - Graphic coordinates.
Z - Depth plane.
Angle - Graphic angle.
Size - Graphic size.
Flags - Mirrors and transparencies.
Region - Display window.

This is a predefined LOCAL variable, which means that each process will have its own value
in its height variable.

The local height variable is exclusively used in the processes that belong to mode 7
windows . That is to say, processes that have their coordinates' system inside a three-
dimensional window (its local variable ctype=c_m7).

It is used to define the height at which the graphics of the processes must be placed above
the three-dimensional plane. The local z variable is not used for this purpose, as it is used
to define the depth plane of the graphics (even if it is now useful only for processes placed
at the same coordinates).

The height of the process can be defined as any integer within the (min_int ... max_int)
range, even if positive numbers are normally used, as the height of the bottom is 0 and
processes are placed above it.

LOCAL height

Page 245

By default, the value of the height variable is 0 for all the processes, which means that if
another value is not specified, the graphics of the processes will appear just above the
bottom of the mode 7 (above the plane three-dimensionally folded).

The graphic's base will first be placed in the indicated height of the process, unless
control point number 0 is defined. In this case, this point will be placed in that height.
__

Note: For further information about the mode 7 windows and how to place graphics inside
these windows, see the help about the start_mode7() function, which is used to activate
them in the program.

This variable can be used for any other purpose in the non mode 7 processes, as the
system will completely ignore it.

This is a predefined LOCAL variable, which means that each process will have its own value
in its priority variable.

In the preparation of each frame, all the processes will be executed in the priority order
established by the priority local variable.

The higher the value of priority in a process is, the sooner it will be processed in each
frame. The priority value may be established as any integer within the (min_int ... max_int)
range. For instance, to establish the priority level of a process at 10, the following statement
must be used:

 priority=10;

All the processes active in the program having the same level of priority will be executed
in a undetermined order that, moreover, may vary from some executions of the game to
others.

By default, the priority local variable will be initialised at 0 in all the processes created in the
program. Thus, it will be possible to execute them in any order, if the value of this variable is
not defined.

If the priority of a single process is fixed at a positive number, such as 1, it will be executed
before the rest of the of the processes. On the other hand, if it is fixed at a negative number,
such as -1, then it will be executed after the rest (supposing that the priority variable of the
rest has not been modified, so its value is still equal to 0).

When the processes priority must be established?
When a process needs to use data of another process for its calculations, it is normally
advisable to execute it after the latter, defining its lowest priority for the data of the second
process to be updated when they are read.

LOCAL priority

Page 246

For instance, if process B must place its graphic 8 pixels lower than the graphic of process
A, the priority of A must be greater than that of B, for the latter to be executed first.

Thus, when process B obtains its y coordinate by adding 8 to the one of process A, this
calculation is done with the y coordinate of process A already updated for the following
frame (to ensure that in each frame, the y coordinate of process A first, and then that of
process B will be established).

For that purpose, suffice would be to define either the priority of A as 1 or the priority of B as
-1, since by default both priorities are at 0.
__

Note: The priority level of the process has nothing to do with the depth plane in which its
graphic appears on screen, as this plane is indicated in the local z variable. That is to say,
the fact that a process is processed before does not mean that the graphic is painted
before.

This is a predefined LOCAL variable, which means that each process will have it own value
in its region variable.

The region local variable defines the zone of the screen in which the graphic of the process
must be visible, indicating the number of region .

A region is a rectangular zone of the screen, such as a window, associated to a number.

By default, this variable will be equal to 0 in all the processes, making reference to region
number 0 that is the entire screen .

That is to say, by default the graphics of the process will be visible in the whole screen (at
any point of the screen in which they are placed).

At the beginning, only region number 0 is defined. To define new screen regions, it is
necessary to use the define_region() function.
__

For instance, for the graphic of a process to be visible only inside a 100 by 100 pixel box
placed in the upper left corner of the screen (at the coordinates 0, 0), first the new region
should be defined in the following way, supposing that region number 1 is defined:

define_region(1,0,0,100,100);

and then, the number of region (1) should be assigned to the region local variable of the
process with the following statement:

region=1;

The regions may be redefined at any moment inside a program. That is to say, they can
change their position or size if necessary.
__

LOCAL region

Page 247

Note: The graphic of a process must be indicated assigning a graphic code to the graph
local variable.

This is a predefined LOCAL variable, which means that each process will have its own value
in its resolution variable.

Normally, the coordinates of a process (indicated in the x and y local variables) are defined
in screen pixels.

The resolution local variable must be used when the aim is to define the coordinates in
units smaller than the pixel.

That is to say, this variable indicates the precision of the process’ coordinates.

By default, the variable will equal 0 and the coordinates will be specified in pixels.

The greater the value of resolution is, the smaller (and more accurate) the unit in which the
coordinates are interpreted will be. Some examples are show below:

resolution=1; - The coordinates are specified in pixels (similar to
resolution=0, which is the value by default).
resolution=10; - They are specified in tenths of pixel.
resolution=100; - They are specified in hundredths of pixels.
resolution=2; - They are specified in half pixel.
...

For instance, a process located at 160, 100 with resolution equal to 0 (or 1), will be in the
same position as a process located at 1600, 1000 and with resolution equal to 10.

The value of resolution is normally defined as a positive integer multiple of 10 (10, 100,
1000, ...).

In short, when the value of resolution is defined, the processes’ manager of DIV Games
Studio will divide the coordinates of the processes between resolution when it comes to
painting their graphics on screen.
__

Important: Much care must be taken when, in a program, there are several processes with
different resolutions of coordinates, as some functions, such as get_dist() (used to obtain
the distance between two processes), will return incorrect results when two processes
using different resolution of coordinates are accessed.

It is normally advisable that all the processes active in the game, at least all that interact
(that are detected, modified or that can be collide) use the same resolution.

LOCAL resolution

Page 248

This is a predefined LOCAL variable, which means that each process will have its own value
in its size variable.

The size local variable defines the size in which the graphic of the process must be seen.
This size is a percentage related to its original size.

By default, the value of this variable will be equal to 100 (100%) for all the processes, and
when the graphic is modified, it will scale (reducing or expanding its size) to adjust to the
new size.

That is to say, to double the size of the graphic displayed, it will be necessary to specify
200%. The following statement will be used for this purpose:

size=200;

Therefore, if this value is lesser than 100, the graphic will be seen smaller; otherwise, it will
be seen bigger.

At first, there is no limit for the graphic size, but if the size local variable is put at 0 (0%),
then the graphic of the process won’t be seen.
__

Note: The graphic of a process must be indicated assigning a graphic code to the graph
local variable.

This is a predefined LOCAL variable, which means that each process will have its own value
in its smallbro variable.

This variable always contains the identifying code of the following process created by the
father of the current process after it. That is to say, when the process that called the current
one calls later another one, this variable will indicate which one is called now.

Inside the language, younger brother is the name given to this process. For further
information, see the hierarchies of processes in the language.

By default, this variable will be equal to 0 until the father process makes a call to another
process. At this moment, the new process (the younger brother of this one) will be created,
indicating its identifying code in smallbro .
__

Note: The identifying code of the elder brother is indicated in the predefined bigbro local
variable.

LOCAL size

LOCAL smallbro

Page 249

This is a predefined LOCAL variable, which means that each process will have its own
value in its son variable.

This variable always contains the identifying code of the last process created (called) by
the current process. That is to say, it indicates which is the last process called.

Inside the language, father process is the name given to the process that calls another one.
On the other hand, son process is the name given to the process that has been called. For
further information, see the hierarchies of processes in the language.

By default, this variable will be equal to 0 until the process makes a call to another process.
At this moment, the new process will be created indicating its identifying code in son .
__

Note: The identifying code of the father process is indicated in the predefined father local
variable.

This is a predefined LOCAL variable, which means that each process will have its own value
in its xgraph variable.

This is an advanced level variable. Thus, its use requires certain experience.

The xgraph local variable (extended graphic) allows us to use multiple graphics . To
define the graphic of a process as a graphics set among which it is necessary to see the
most appropriate with the angle’s process (specified in the angle local variable).

That is to say, if the xgraph variable is defined, the graph local variable which normally
defines the graphic of the process will be ignored and one graphic or another will be used
depending on the angle variable.

Therefore, on changing the process’ angle the graphic of the process won’t appear
rotated , but it will use this angle to select the process’ graphic (inside the defined set).

By default the xgraph variable will equal 0 in all the processes, which indicates that they are
not going to use multiple graphics .

The utility of the multiple graphics lies on the possibility of creating games in perspective ,
where the change of an angle in the process doesn’t implied a rotation of its graphic, but the
replacement of the graphic by another one painted in a different perspective (painted with
another angle inside that perspective).

How to use the multiple graphics .

1 - First, the different pictures that are going to represent the process’ graphic have to be
painted with different angles in perspective. The latter will be a finite number of graphic’s
views, such as 4, 8, 12, etc., (or any other integer bigger than 1).

LOCAL son

LOCAL x graph

Page 250

Take into account that if 4 views are defined, a different view will be defined every 90
degrees, if 8 views are defined, every 45 degrees, etc.

2 - It is necessary to put these graphics in order according to their angles. First, the graphic
corresponding with angle 0 (towards the right) and then, the rest in a clockwise direction.

3 - A table, generally GLOBAL , must be created and initialised with the following values:

Number of graphic’s views,
Graphic’s code for angle 0 (first view),
Code of the following angle (second view),
 ...

The name given to this table makes no difference. For instance, if a multiple graphic is
defined with 4 views, which must be the graphics with the codes 10, 11, 12, and 13, the
definition of the table could be as follows:

GLOBAL
table_graphic1[]=4,10,11,12,13;
....

4 - Finally, the offset of this table must be assigned inside the computer’s memory to the
xgraph local variable of the process, which is done with the following statement (inside the
process in question):

xgraph=OFFSET table_graphic1;

The OFFSET operator is used to obtain the offset of a program’s datum in the memory.
__

Once the multiple graphic has been defined, in each frame of the game the system will
use the graphic corresponding with the angle closest to the process’ angle (the one
indicated in its angle variable).

The xgraph variable must be put at 0 again in order to disable the multiple graphic system
in a process,

Important: If any graphic’s code is put with a negative sign inside the table that defines the
set of graphics, then this graphic will appear horizontally flipped . That is to say, if the
graphic was facing right, it will appear facing left, and vice versa.
__

Note: The multiple graphic system is normally used in mode 7 windows , as in the folded
three-dimensional plane the graphics must be seen in a different way, according to the
angle from which they are observed.

For further information about this technique, see the start_mode7() function used to
activate a mode 7 window in the program.

Page 251

These are predefined local variables, which means that every process will have its own
value in its x and y variables.

These local variables of the processes define where their graphic (defined in the graph local
variable) must be placed.

The x local variable defines the process’ horizontal coordinate , which may be defined as
an integer within the range (min_int ... max_int), putting the positive coordinates to the
right and the negative ones, to the left.

The y local variable defines the process’ vertical coordinate , which may be defined as an
integer within the range (min_int ... max_int), placing the positive coordinates downwards
and the negative ones, upwards.

By default, these coordinates will be specified in pixels , referred to screen coordinates,
where the upper left corner is the point placed at (0, 0).

Type of coordinates.

There are several systems of coordinates that may be used by the processes and that are
defined with the ctype local variable. The coordinates related to the screen are the system
by default.

Resolution of the coordinates.

The resolution local variable indicates the precision of the process coordinates. By default,
this variable will be equal to 0 and the (x, y) coordinates will be specified in pixels.

The higher the value of resolution is, the smaller (and more precise) the unit in which the
coordinates are interpreted will be. Some examples are now shown:

resolution=1; - The coordinates are specified in pixels.
resolution=10; - They are specified in tens of pixels.
resolution=100; - They are specified in hundreds of pixels.
resolution=2; - They are specified in half pixel.
...

__

Note: A different type and resolution of coordinates may be either defined for each process
or changed while executing if necessary.
__

Important: When a graphic is placed at some specific coordinates, it is the graphic center
that will normally be placed at these coordinates.

This can be changed by defining in the graphic editor control point number 0 of the
graphic of the process (whose graphic code is indicated in the graph variable).

If the control point has been defined, it will be placed at the specified coordinates.

LOCAL x, LOCAL y

Page 252

For instance, if control point number 0 is placed in the upper left corner of the graphic,
and then, the graphic is put at the (100, 100) coordinates, the upper left corner of the
graphic will be placed at these coordinates.

This is a predefined LOCAL variable, which means that each process will have its own value
in its z variable.

The z local variable defines the depth plane in which the process graphic must be placed on
screen (the graphic is defined in the graph local variable). That is to say, it defines what
must appear above the process’ graphic and what under it.

Any integer within the range (min_int ... max_int) may be used as a depth plane. The
greater the number is, the deeper the graphic will be placed.

By default, the depth planes are arranged in the following way:

(+) Greater depth

 +512 - Scroll windows (see scroll[].z)
 +256 - Mode 7 windows (see m7[].z)
 0 - Graphics of the processes (local z)
 -256 - Texts (see text_z)
 -512 - Mouse pointer (see mouse.z)

(-) Less depth

That is to say, the z local variable that defines the depth plane of the processes’ graphics
will be initialised at 0. The processes’ graphics will be placed below the mouse pointer and
texts, and above the scroll and mode 7 windows (if the values are not modified by default).
__

All the objects (texts, graphics, windows, ...) placed in the same depth plane will appear on
screen (on being superposed) in an undetermined order , that may vary from some
program’s executions to some others.

If the aim was, for instance, that the graphic of a process appeared above all the objects of
the program, a depth plane could be fixed for it above the rest (as -1000), with the following
statement:

z=-1000;

At the beginning, all the processes have their z variable at 0, then the graphic of the
processes will appear in any order if the plane in which each of them must be placed is not
defined.

The depth plane of a process may be modified (by assigning a new value to its z variable)
as often as necessary inside a program.

LOCAL z

Page 253

The depth planes of the rest of objects (windows, texts and mouse pointer) may also be
modified at any stage of the program.
__

Note 1: The processes that belong to a scroll window (having its variable ctype=c_scroll)
will be painted in the depth plane of the scroll window . Nevertheless, inside that window,
all the graphics of the processes will appear in order, according to their depth plane .

That is to say, the process’ depth plane (indicated as usual in the z variable) will be referred
to the scroll window in which the process appears (see start_scroll()).
__

Note 2: The processes that belong to a mode 7 window (having its variable ctype=c_m7)
will appear in that window in order, according to the depth order in the three-
dimensional plane ignoring the value of their z local variable.

The only sense of the z local variable in mode 7 processes is to define the order in which
the processes exactly placed at the same coordinates of the folded plane must be
superposed. That is to say, if two processes are placed in the three-dimensional plane at
the same coordinates, then it will be possible to define, through the z variable, which one
must appear above the other (see start_mode7()).

Page 254

These constants are normally used as a parameter of the key() function, to indicate which
key is the one that the user wishes to know whether it is pressed.

It can also be used to compare the scan_code global variable, that contains the code of the
last key that has been pressed, with these values.

The character _ (underlining) followed by the name of the key, is normally used to designate
each constant. For instance, for the A key, the constant referred to its code will be _a.

The whole list of these constants, with their respective values, is as follows (according to the
standard arrangement of the keyboard):

C6 – Predifined CONSTANTS

Keyboard codes

_esc = 1 [ESC] or escape
_f1 = 59 [F1] or function 1
_f2 = 60 [F2] or function 2
_f3 = 61 [F3] or function 3
_f4 = 62 [F4] or function 4
_f5 = 63 [F5] or function 5
_f6 = 64 [F6] or function 6
_f7 = 65 [F7] or function 7
_f8 = 66 [F8] or function 8
_f9 = 67 [F9] or function 9
_f10 = 68 [F10] or function 10
_f11 = 87 [F11] or function 11
_f12 = 88 [F12] or function 12 (DEBUGGER)
_prn_scr = 55 [PRINT SCREEN]
_scroll_lock = 70 [SCROLL LOCK]

_wave = 41 [º] or [ª] key
_1 = 2 Number "1" key
_2 = 3 Number "2" key
_3 = 4 Number "3" key
_4 = 5 Number "4" key
_5 = 6 Number "5" key
_6 = 7 Number "6" key
_7 = 8 Number "7" key
_8 = 9 Number "8" key
_9 = 10 Number "9" key
_0 = 11 Number "0" key
_minus = 12 Symbol "-" key
_plus = 13 Symbol "+" key

_backspace = 14 Delete (<-) key
_tab = 15 Tabulator [TAB] key
_q = 16 Letter "Q" key
_w = 17 Letter "W" key
_e = 18 Letter "E" key

Page 255

_r = 19 Letter "R" key
_t = 20 Letter "T" key
_y = 21 Letter "Y" key
_u = 22 Letter "U" key
_i = 23 Letter "I" key
_o = 24 Letter "O" key
_p = 25 Letter "P" key
_l_brachet = 26 [^] or [`] key
_r_brachet = 27 [*] or [+] key
_enter = 28 [ENTER] (Enter or Return)

_caps_lock = 58 [CAPS LOCK] or capitals lock
_a = 30 Letter "A" key
_s = 31 Letter "S" key
_d = 32 Letter "D" key
_f = 33 Letter "F" key
_g = 34 Letter "G" key
_h = 35 Letter "H" key
_j = 36 Letter "J" key
_k = 37 Letter "K" key
_l = 38 Letter "L" key
_semicolon = 39 Letter "Ñ" key
_apostrophe = 40 [{] key
_backslash = 43 [}] key

_l_shift = 42 [SHIFT] or left capitals
_z = 44 Letter "Z" key
_x = 45 Letter "X" key
_c = 46 Letter "C" key
_v = 47 Letter "V" key
_b = 48 Letter "B" key
_n = 49 Letter "N" key
_m = 50 Letter "M" key
_comma = 51 [;] or [,] key
_point = 51 [:] or [.] key
slash = 51 [] or [-] key
_r_shift = 54 [SHIFT] or right capitals

_control = 29 [CONTROL] keys
_alt = 56 [ALT] or [ALT GR] key
_space = 57 [SPACE] or spacebar

_ins = 82 [INSERT]
_home = 71 [HOME]
_pgup = 73 [PGUP] or page up
_del = 83 [DEL] or delete
_end = 79 [END]
_pgdn = 81 [PGDN] or page down

_up = 72 Up cursor
_down = 80 Down cursor
_left = 75 Left cursor
_right = 77 Right cursor

Page 256

It is indifferent to use these constants or the numeric values that they represent. That is to
say, it is possible to call the key() function, to verify whether the A key is pressed, such as
key(_a) or key(30) (in the previous list, it is possible to verify that 30 is the numeric value of
the constant _a).

These constants are used to indicate the videomode in the set_mode() function.

Each constant indicates the videomode in the following way: first, the letter m and then, the
horizontal and vertical resolution of the mode, separated by an x. The values defined for
these constants are the following ones:

_num_lock = 69 [NUM LOCK] or numeric lock
_c_backslash = 53 Symbol [/] of the numeric keyboard
_c_asterisk = 55 Symbol [*] of the numeric keyboard
_c_minus = 74 Symbol [-] of the numeric keyboard
_c_home = 71 [HOME] of the numeric keyboard
_c_up = 72 Up cursor of the numeric keyboard
_c_pgup = 73 [PGUP] of the numeric keyboard
_c_left = 75 Left cursor of the numeric keyboard
_c_center = 76 [5] key of the numeric keyboard
_c_right = 77 Right cursor of the numeric keyboard
_c_end = 79 [END] of the numeric keyboard
_c_down = 80 Down cursor of the numeric keyboard
_c_pgdn = 81 [PGDN] of the numeric keyboard
_c_ins = 82 [INS] of the numeric keyboard
_c_del = 83 [DELETE] of the numeric keyboard
_c_plus = 78 Symbol [+] of the numeric keyboard
_c_enter = 28 [ENTER] of the numeric keyboard

Videomodes - Constants: m320x200 ... m1024x768

 m320x200 = 320200
 m320x240 = 320240
 m320x400 = 320400
 m360x240 = 360240
 m360x360 = 360360
 m376x282 = 376282
 m640x400 = 640400
 m640x480 = 640480
 m800x600 = 800600
 m1024x768 = 1024768

Page 257

These constants are used to be assigned to the predefined cnumber local variable that is
used to define the scroll or mode 7 windows in which the graphic of a process must appear.

This will only be necessary when several scroll or mode 7 windows have been
activated, and it ISN’T aimed to display the graphic of the process in all of them.

Up to 10 windows of these types may be defined, numbered from 0 to 9, and that directly
correspond with the constants c_0, c_1, c_2 ... c_9.

For the graphic of a process to appear only in one of these windows, the corresponding
constant must be assigned to its cnumber local variable. For instance, if the aim was for the
graphic of a process to appear only in (scroll or mode 7) window number 3, the following
statement would be included in its code:

cnumber=c_3;

If the aim for the graphic of a process is to appear in several of these windows, then the
constants must be added. For instance, for a process to appear in the windows 0, 4, and 5,
the following assignment will be performed:

cnumber=c_0+c_4+c_5;

For the graphic to appear in all the windows, suffice will be to assign 0 to the cnumber
variable. It won’t be necessary if this variable has not been modified, as it is its value by
default.

The values equivalent to these constants correspond with the following powers of 2:

This constant is used to indicate true values, to initialise logical variables or to define logical
parameters. That is to say, it must be evaluated as a condition.

Its value is 1 and, as in the language all the odd numbers are interpreted as true , this
constant will be evaluated as a condition that is always complied (true).

Numbers of window - Constants: c_0 ... c_9

c_0 = 1 scroll / mode-7 number 0
c_1 = 2 scroll / mode-7 number 1
c_2 = 4 scroll / mode-7 number 2
c_3 = 8 scroll / mode-7 number 3
c_4 = 16 scroll / mode-7 number 4
c_5 = 32 scroll / mode-7 number 5
c_6 = 64 scroll / mode-7 number 6
c_7 = 128 scroll / mode-7 number 7
c_8 = 256 scroll / mode-7 number 8
c 9 = 512 scroll / mode-7 number 9

true

Page 258

This constant is used to indicate false values, to initialise logical variables or to define
logical parameters. That is to say, it must be evaluated as a condition.

Its value is 0 and, as in the language all the even numbers are interpreted as false , this
constant will be evaluated as a condition that is never complied (false).

This constant is used as a parameter of the signal() function (to send signals to the
processes). Its value is 0.

This signal transmits the imperative order kill to the processes. It is used to eliminate
processes in the program (to make certain objects of the game disappear).

That is to say, on sending a signal s_kill to a process, the latter will be eliminated and will
not appear any longer in the following frames of the game.

The constant s_kill_tree is directly linked to this constant, with the proviso that, on sending
this signal, the former will eliminate the indicated process and its sons , which are the
processes created by it.

The whole list of the constants used as signals that can be sent to the different processes of
a program is the following one:

This constant is used as a parameter of the signal() function (to send signals to the
processes). Its value is 1.

This signal transmits the imperative order wakeup to the processes. It is used to restore the
processes that have been made dormant (with the signal s_sleep), or frozen (with the
signal s_freeze) to their normal state.

That is to say, on sending a signal s_wakeup to a process, the latter will be reactivated in
the following frames of the game (it will be seen and processed again).

The constant s_wakeup_tree is directly linked to this constant, with the proviso that, on
sending this signal, the former will wake up the indicated process and its sons , which are
the processes created by it.

This constant is used as a parameter of the signal() function (to send signals to the
processes). Its value is 2.

false

s_kill

s_wakeup

s_sleep

Page 259

This signal transmits the imperative order sleep to the processes. It is used to make a
process dormant. An asleep process will not appear in the following frames of the game, but
it won’t be eliminated, as it happens with the signal s_kill . Indeed, this kind of process may
wake up at any moment with a signal s_wakeup .

That is to say, on sending a signal s_sleep to a process, the latter will not appear in the
following frames of the game (until it is awaken or eliminated).

The constant s_sleep_tree is directly linked to this constant, with the proviso that, on
sending this signal, the former will make dormant the indicated process and its sons , which
are the processes created by it.

This constant is used as a parameter of the signal() function (to send signals to the
processes). Its value is 3.

This signal transmits the imperative order freeze to the processes. It is used to freeze
(immobilise) a process. A frozen process will continue to appear in the following frames of
the game, but it won’t be processed, so it will remain immobile. This process can be
reactivated at any moment if a signal s_wakeup is sent to it.

That is to say, on sending a signal s_freeze to a process, the latter will stop processing
(stop interpreting its statements) in the following frames of the game (until it is activated or
eliminated with s_kill).

The constant s_freeze_tree is directly linked to this constant, with the proviso that, on
sending this signal, the indicated process as well as its sons (which are the processes
created by it) will be frozen.

This constant is used as a parameter of the signal() function (to send signals to the
processes). Its value is 100.

This signal is used to eliminate a process and all the process created by it, by sending the
imperative order kill to them. This is a version of the signal s_kill , which eliminates a
process, but not the processes that it had created.

That is to say, the signal s_kill_tree will eliminate the process and all its descendants.
Thus, none of them will appear any longer in the following frames of the game.

s_freeze

s_kill_tree

Page 260

This constant is used as a parameter of the signal() function (to send signals to the
processes). Its value is 101.

This signal is used to wake up a process and all the processes created by it, by sending the
imperative order wakeup to them. This is a version of the signal s_wakeup , which wakes a
process up, but not the processes that it had created.

That is to say, the signal s_wakeup_tree will wake up the process and all its descendants.
Thus, all these processes will return to their normal state in the following frames of the
game.

Processes that have been made dormant with the signal s_sleep_tree or frozen with the
signal s_freeze_tree can be woken up (reactivated).

This constant is used as a parameter of the signal() function (to send signals to the
processes). Its value is 102.

This signal is used to make a process and all the processes created by it dormant , by
sending the imperative order sleep to them. This is a version of the signal s_sleep , which
makes a process dormant, but not the processes that it had created.

That is to say, the signal s_sleep_tree will make the process and all its descendants
dormant. Thus, all these processes will disappear in the following frames of the game (but
they won’t be eliminated).

These asleep processes can be woken up (reactivated) with the signal s_wakeup_tree .

This constant is used as a parameter of the signal() function (to send signals to the
processes). Its value is 103.

This signal is used to freeze (immobilise) a process and all the processes created by it, by
sending the imperative order freeze to them. This is a version of the signal s_freeze , which
freezes a process, but not the processes that it had created.

That is to say, the signal s_freeze_tree will freeze the process and all its descendants.
Thus, all these processes will stop processing in the following frames of the game (they will
remain immobile, as they won’t execute their statements).

These frozen processes can be unfrozen (reactivated) with the signal s_wakeup_tree .

s_wakeup_tree

s_sleep_tree

s_freeze_tree

Page 261

This constant is used as a parameter of the delete_text() function, to delete all the texts
displayed in the program with the write() and write_int() functions.

That is to say, the following statement must be executed in order to make disappear all the
texts displayed on screen:

delete_text(all_text);

The value assigned to this constant is 0.

This constant is used as parameter of the stop_sound() function, to stop all the sound
effects previously activated with the sound() function.

That is to say, the following statement must be executed in order to stop all the sound
channels, active at a specific moment:

stop_sound(all_sound);

The value assigned to this constant is -1.

This constant is used as a parameter of the graphic_info() function, to ask for information
about the width (in pixels) of a specific graphic. Its value is 0.

This constant is used as a parameter of the graphic_info() function, to ask for information
about the height (in pixels) of a specific graphic. Its value is 1.

This constant is used as a parameter of the graphic_info() function, to ask for information
about the horizontal center of a specific graphic. Its value is 2.

The horizontal center of a graphic will be half the width (in pixels), if control point number
0 (graphic center) has not been defined in the painting tool.

all_text

all_sound

g_wide

g_height

g_x_center

Page 262

This constant is used as a parameter of the graphic_info() function, to ask for information
about the vertical center of a specific graphic. Its value is 3.

The vertical center of a graphic will be half the height (in pixels), if the control point
number 0 (graphic center) has not been defined in the painting tool.

This constant is used to be assigned to the predefined ctype local variable used to define
the type of coordinates that a process will have. Its value is 0.

This is the value by default of ctype , used for the coordinates of the graphic of the
process to be interpreted as if they were referred to the screen. The (0,0) coordinate is the
upper left corner.

This constant is used to be assigned to the predefined ctype local variable used to define
the type of coordinates that a process will have. Its value is 1.

This is the value assigned to ctype , used for the coordinates of the graphic of the process
to be interpreted as if they were referred to a scroll window, to coordinates with respect to
the foreground’s graphic.

For further information about the scroll windows , it is possible to access the start_scroll()
function used to activate them.

This constant is used to be assigned to the predefined ctype local variable used to define
the type of coordinates that a process will have. Its value is 2.

This is the value assigned to ctype , used for the coordinates of the graphic of the process
to be interpreted as if they were referred to a mode 7 window, three-dimensionally folded in
that window.

For further information about the mode 7 windows , it is possible to access the
start_mode7() function used to activate them.

g_y_center

c_screen

c_scroll

c_m7

Page 263

This constant is used to be assigned to the predefined dump_type global variable used
to define the type of dump that will be performed on screen. Its value is 0.

The following statement is used:

dump_type=partial_dump;

This statement indicates to the manager of processes of DIV Games that the following
dumps must be partial .

Dump is the name given to the system of sending the game’s frames to the monitor (to the
video memory of the graphics card).

There are two types of dumps:

Partial : Only the graphics that are updated and that have varied with regard to the previous
frame will be dumped on screen. It is advisable to activate this dump in order to gain speed
when programming a game (or a section of it) without a scroll or mode 7 window occupying
the whole screen. That is to say, either when the game shows graphics movements against
a fixed background or when the active scroll or mode 7 windows are smaller that the screen.

Complete : All the screen will be dumped, irrespective of whether the graphics have
changed or not. This is the dump by default and it is slower that the partial dump .
However, the complete dump must be used when the game has a scroll or mode 7 window
occupying the whole screen.

This constant is used to be assigned to the predefined dump_type global variable used to
define the type of dump that will be performed on screen. Its value is 1.

This is the value by default of the dump_type variable. To establish this value, it is
necessary to use the following statement:

 dump_type=complete_dump;

This statement indicates to the manager of processes of DIV Games that the following
dumps must be complete .

This constant is used to be assigned to the predefined restore_type global variable used to
define the type of restoration that must be applied to the screen background after each
game frame. Its value is -1.

partial_dump

complete_dump

no_restore

Page 264

The expression background restoration deals with the operation of restoring the screen
areas in which graphics have been painted or texts have been written in the previous frame.
That is to say, to delete both the painted graphics and the written texts.

The following statement must be used to establish this value:

restore_type=no_restore;

This statement indicates to the manager of processes of DIV Games Studio that, after the
following game’s frames it is not necessary to restore the screen background .

If the background is not restored, speed will be gained in the execution of the game (that
will go faster in slow computers). But this mode of restoration (no_restore) can only be
applied in games or in their sections in which there is a scroll or mode 7 window
occupying the whole screen .

This constant is used to be assigned to the predefined restore_type global variable used to
define the type of restoration that must be applied to the screen background after each
game frame. Its value is 0.

The following statement must be used to establish this value:

restore_type=partial_restore;

This statement indicates to the manager of processes of DIV Games Studio that, after the
following game’s frames only the screen areas in which graphics have been painted or
texts have been written must be restored .

This mode of restoration (partial_restore) is faster than a complete restoration (option by
default), but it must only be applied in games, or in their sections, in which there ISN’T a
scroll or mode 7 window occupying the whole screen .

This constant is used to be assigned to the predefined restore_type global variable used to
define the type of restoration that must be applied to the screen background after each
game frame. Its value is 1.

This is the value by default of the restore_type variable and, it is the slowest mode of
the three available restoration modes. The following statement must be used to establish
this value:

restore_type=complete_restore;

This statement indicates to the manager of processes of DIV Games Studio that, after the
following game’s frames the screen background must completely be restored .

partial_restore

complete_restore

Page 265

This mode of restoration (complete_restore) is the slowest one (and it is the option by
default). Therefore, it can be changed by another one in order to gain speed in the
execution of the game (so it will go faster in slow computers).

As a matter of fact, this mode of restoration is only interesting for games (or for their
sections) that DON’T have a scroll or mode 7 window occupying the whole screen, but that
have a great number of graphics moving through the screen.

This constant defines the minimum value that any datum can store in this language. This
value is -2147483648.

All the data are 32 bit integers with sign in this language. For that reason, only integers
within the range (-2147483648 ... +2147483647) may be used.

When the result of an arithmetic operation exceeds that range, the system won’t report any
error. In order to avoid this situation, much care must be taken.

This constant defines the maximum value that any datum can store in this language. This
value is 2147483647.

This constant defines the equivalence in degree thousandths of the mathematical constant
pi (approximately 3.14159265 radians).

Its value is 180000 degree thousandths (180 degrees), equivalent to pi radians .

It is normally used to define angles. For instance, 180 degrees could be defined as pi , -90
degrees as -pi/2 , 45 degrees as pi/4 , etc.

min_int

max_int

pi

Page 266

Page 267

 !!����2��

�

Page 268

ALT+X - To exit the graphic environment to the operating system.
ESC+Control - To exit the graphic environment to the operating system.

ALT+S - To execute a session of the MS-DOS operating system.

ESC - To cancel a dialog box.
TAB - To choose the selected control of a window or box.
Enter - To activate the selected control.

F1 - To invoke the help window.

F2 - To save the selected program.
F4 - To open a program.
F10 - To save and execute the selected program.
F11 - To compile the selected program.
F12 - To save and debug the selected program.

Control+ALT+P - To save a snapshot of the graphic environment (DIV_*.PCX)

ESC+Control - To exit the game.
ALT+X - To exit the game.

Control+ALT+P - To save a snapshot of the game (SNAP*.PCX)
F12 - To invoke the program’s debugger.
Pause - To stop the game momentaneously.

Cursors. - Shift through the listing.
Pg.Up - Previous page.
Pg.Dn. - Following page.

F5 - To see the listing of a process.
F6 - To execute the current process.

 ������-�����	$$��#��/�4�#5�������$$����

COMMANDS IN THE GRAPHIC ENVIRONMENT

COMMON COMMANDS IN THE GAMES

COMMANDS IN THE PROGRAM’S DEBUGGER

Page 269

F7 - To see or edit data.
F8 - To debug statement.
F9 - To set a breakpoint.
F12 - Invoke the debugger / Advance frames.

F - To execute to the next frame.

TAB - To select button.
Enter - To activate button.
ESC - To exit the debugger.

Generic commands.

F5 - To go to the beginning of a program’s process.
Control +Z - To expand the size of the selected program window.

Basic movement and edit commands.

Cursors - Basic movement of the cursor.
Home - To go to the beginning of the line.
End - To go to the end of the line.
Pg.Dn. - Following page.
Pg.Up - Previous page.
Insert - To toggle between insert and overwrite.
Delete - To delete the character under the curser.
Backspace - To delete the character previous to the cursor.
TAB - Insert a tab indent.
Shift +TAB - To remove a tab indent.
Control +Delete ,Control +Y - To delete the current line.
Control +Right - Following word.
Control +Left - Previous word.
Control +Pg.Up - To go to the beginning of the program.
Control +Pg.Dn. - To go to the end of the program.
Control +Home - To go to the beginning of the page.
Control +End - To go to the end of the page.

Search and replacement commands.

ALT+F, Control +F - To search for a text.
ALT+N, F3, Control +L - To repeat search.
ALT+R, Control +R - To replace text.

COMMANDS IN THE PROGRAM’S EDITOR

Page 270

Blocks commands type QEDIT.

ALT+A - To tag the beginning or end of a permanent block.
ALT+U - To untag the permanent block.
ALT+C - To copy the block to the current position.
ALT+M - To move the block to the current position.
ALT+D, ALT+G - To delete the block.

Blocks commands type EDIT.

Shift +Movement - To tag volatile block (Movement keys: Cursors , Control + Right ,
Control + Left , Pg.Up , Pg. Dn., Home , End).

Shift +Insert - To paste block.
Control +Insert - To copy block.
Shift +Delete - To cut block.

Control +X - To cut block.
Control +C - To copy block.
Control +V - To paste block.

Delete - To delete block.

Generic commands.

F1 - To invoke the help window.

ESC - To exit the graphic editor.

Cursors,OP/QA - Movement of the cursor.
Spacebar - Equivalent to click with the left mouse button.
Shift+Movement - 8 by 8 pixel movement.
Shift+Left button - To take colour from screen.

W,S - To choose colour within the current range.
Shift+W,S - To choose current range.
Control+Cursors - To choose colour and range.

Backspace - To undo.
Shift+Delete - To repeat action (redo).

0 - To select the transparent colour.
B - To highlight the transparent colour.
C - Colours window.
M - Mask window.
Z - To change the zoom percentage.

COMMANDS IN THE GRAPHIC EDITOR

Page 271

Tool selection commands.

F1 - Dotting bar.
F2 - Pen, for hand drawing.
F3 - Straight lines.
F4 - Multiline, stringed lines.
F5 - Curves bézier.
F6 - Multicurve, stringed curves.
F7 - Rectangles and boxes.
F8 - Circles and circumferences.
F9 - Paint spray.
F10 - Filling of surfaces.
F11 - Blocks edit.
F12 - To undo and redo actions.
Shift+F1 - To write texts.
Shift+F2 - To position control points.
Shift+F3 - Dotting bar

Specific commands.

Control - To move selection (bar: to select block).
Control - To level width and height (bars: rectangles and circles).
D - To smooth (bars: pen, lines, curves and spray).
H - To hide the cursor (bar: offset block).
+,- - To vary strength (bar: multicurve).

Page 272

Page 273

 !!����2��

�

Page 274

This appendix contains technical information for programmers using other languages. This
information is not necessary to develop video games with DIV Games Studio.

Head (+0):

‘p’,’a’,’l’ 3 bytes (ascii).
1A0D0A00 4 bytes (hex).
Version 1 byte (0).

Subtotal: 8 bytes.

Palette (+8)

256 colour components:

Red 1 byte (0..63).
Green 1 byte (0..63).
Blue 1 byte (0..63).

Subtotal: 768 bytes.

Range of colours (+776)

16 definitions of range :

Number of colours 1 byte (8,16 o 32).
Type of range 1 byte (0:direct, 1-2-4-8 editable each “n” colours).
Fixed 1 byte (0:no, 1:yes)
Black colour 1 byte
Colours in the range 32 bytes (according to type).

Subtotal: 576 bytes.

Total : 1352 bytes.

Note : To export other formats, which lack the information about the range of colours, to
DIV Games Studio files, the 576 bytes of the ranges must be defined as shown:

16,0,0,16 dup (0),
16,0,0,16 dup (16),
16,0,0,16 dup (32),
...
16,0,0,16 dup (240)

These 576 bytes cannot be defined as zeros or they would make the file not valid.

 ������-�������$�����/� ����1��

PAL Files

Page 275

Head (+0)

‘m’,’a’,’p’ 3 bytes (ascii).
1A0D0A00 4 bytes (hex).
Version 1 byte (0).
Width 1 word.
Height 1 word.
Code of the graph 1 double word.
Description 32 bytes (asciiz).

Subtotal: 48 bytes.

Palette (+48)

(See file PAL)

Subtotal: 768 bytes.

Ranges of colours (+816)

(See file PAL)

Subtotal: 576 bytes.

Control Points (+1392)

Number of points 1 word.

Description of point x Number of points

Coordinate x 1 word.
Coordinate y 1 word.

Subtotal: 2+(4 x points number) bytes.

Graphic Map (+1394+(4 x points number))

Points of the map Width x Height bytes.

Subtotal: Width x Height bytes.

Total : 1394+(4 x points number)+(Width x Height)

Files MAP

Page 276

Head (+0)

‘f’,’p’,’g’ 3 bytes (ascii).
1A0D0A00 4 bytes (hex).
Version 1 byte (0).

Subtotal: 8 bytes.

Palette (+8)

(See PAL file)

Subtotal: 768 bytes.

Ranges of colours (+776)

(See PAL file)

Subtotal: 576 bytes.

Graphic Maps contained in the file (+1352)

To the end of the file, description of a graphic map.

Code of the graphic. 1 double word.
Length of the record in bytes. 1 double word.
Description 32 bytes (asciiz).
Name of file 12 bytes.
Width 1 double word.
Height 1 double word.
Points number 1 double word.

Description of point x Points number.

Coordinate x 1 word.
Coordinate y 1 word.

Graphic Map

Points of the map Width x Height bytes.

Subtotal (per each map): 64+(4 x points number)+(Width x Height)

Total : 1352 + Records of the maps.

Files FPG

Page 277

PRG Files are in the standard format of text ASCII MS-DOS.

Head (+0)

‘f’,’n’,’t’ 3 bytes (ascii).
1A0D0A00 4 bytes (hex).
Version 1 byte (0).

Subtotal: 8 bytes.

Palette (+8)

(See PAL file)

Subtotal: 768 bytes.

Ranges of colours (+776)

(See PAL file)

Subtotal: 576 bytes.

Information of the font (+1352)

Groups of characters included in the font 1 double word.

+1 Numbers.
+2 Capital letters.
+4 Small letters.
+8 Symbols.
+16 Extended.

Subtotal: 4 bytes.

Font Table (+1356)

256 Structures of the characters, as they are described:

Width of the character 1 double word.
Height of the character 1 double word.
Vertical Slide 1 double word.
Offset of the graphic in the file 1 double word.

Subtotal: 4096 bytes.

Files PRG

Files FNT

Page 278

Graphic Maps of the characters

Each character comes in the offset indicated in the file.

Map of the character Width x Height bytes.

Total : 5452 + Addition of the 256 (Width x Height)

Page 279

 !!����2��

�

Page 280

The CD-ROM is divided into three main directories: DATA, INSTALL and GAMES.

The DATA directory contains all the main archives of DIV Games Studio which will be
detailed later in this appendix.

The directories INSTALL and GAMES contain the sample games of DIV separately. They
allow you to play with them even if they are not installed as a tool. Both directories contain in
turn 15 sub-directories more, one for each of the games.

ALIEN - Alien Suprimer
BILLIARD - Total Billiards
BLASTUP - Blast’em up
COINS - World Bottle Caps Championship
STEROID - Steroid
SPEED - Speed for Dummies
SOCCER - Soccer
CHECKOUT- Checkout
FOSTIATO - Fostiator
GALAX - Galax
PUZZLE - Puzzle ‘o’ matic
NOID - Noid
MALVADO - The castle of Dr. Malvado
HELIOBAL - Helioball

In the game versions included in INSTALL there is a program called INSTALL.EXE within
the subdirectory of each game. This is the program you have to execute in order to install
the game independently in the computer (without need of installing DIV Games Studio
too).

However, the directory GAMES contains several versions of these games already installed
which can be run directly from the CD-ROM . The games which have been executed from
the CD-ROM will work all right but they won’t include the sound effects. To hear these you’ll
have to install these games in the computer hard disk.

 ������-������6�&�$�����7�����������

GENERAL CONTENTS

Page 281

This is the main directory and it is divided into the following sub-directories.

DAT - Archives of data of DIV sample games.
DLL - Dynamic link libraries programmed in C for DIV.
FLI - Animations of some of the sample games.
FNT - Archives of fonts of the sample games.
FPG - Files of graphics of the sample games.
HELP - Archives of the electronic help of DIV.
IFS - Types of basic letters for the font generator.
INSTALL - Archives required to create installations.
MAP - Sample games graphics and libraries.
PAL - Several archives with generic colours palettes.
PCM - Sound of the sample games and tutorials.
SETUP - Archives required for the sound set-up.
SYSTEM - Generic archives of DIV Games Studio.

The CD-ROM directories you may wish to access after the program has been installed in
the computer are: IFS, to access the letter fonts; MAP, to access the graphic library; and
PCM to access the sound library.

A summary of the contents of the directories IFS and MAP are shown below so that you can
localise the archives of these directories quickly.

In the directory of DATA\MAP\LIBRARY in the CD-ROM are many maps with graphics
which can be freely used in new videogames created with DIV Games Studio. This directory
is divided into 12 subdirectories which correspond with the different map categories. These
are:

TEXTURES - Textures for tiles, fillings, etc.
3DMAN - Human animations in different perspectives.
SPACECRAFT - Several maps with spatial graphics.
EXPLOSIO - Several types of explosion
BLOCKS - Building blocks.
FACES - Several types of faces.
CARS - Car graphics and other related to them.
DÈCOR - Dècor graphics for games.
BACKGROUNDS- Several decorating backgrounds.
GAMES - DIV Sample games graphics.
COUNTRIES - Maps of several countries.
MISCELLANEOUS- Collection of assorted graphics.

CONTENTS OF DATA

CD-ROM GRAPHIC LIBRARIES

Page 282

Page 283

�������

Page 284

DIV Arena has been set up on the Internet to support the growing community of DIV Games
Studio Users.

Pay it a visit, and be part of the community: WWW.DIV-ARENA.COM

WHAT WILL YOU FIND THERE?
� Advice
� New Demos
� Latest News
� Forum
� Extra Textures, graphics, and sounds
� Additional code
� Tutorials
� And above all else… a thriving community!

NOTE
We kindly ask you to let us know anything you consider interesting for us, such as unofficial
DIV Websites (in order to include their links on DIV ARENA), new DLL libraries for DIV (see
README.TXT file of the DLL\SOURCE directory), auxiliary tools, etc.

We believe it is very important for everyone interested in this product to have the opportunity
to contact each other so that good development teams can be created: one can specialise
in graphics, another in programming, another in design and so on. Just an idea, but more
heads are better than one.

��6�&�$�����	�������������5

